References
Alkhazendar, I., Zubair, M., & Qidwai, U. (2022). Smart hardware Trojan Detection System. In Lecture notes in networks and systems (pp. 791–806). https://doi.org/10.1007/978-3-031-16075-2_58
Andrade, R. O., Yoo, S. G., Tello-Oquendo, L., Flores, M., & Ortiz, I. (2022). Integration of AI and IoT approaches for evaluating cybersecurity risk on Smart City. In Internet of things (pp. 305–333). https://doi.org/10.1007/978-3-030-87059-1_12
Arora, D., Gupta, S., & Anpalagan, A. (2022). Evolution and adoption of next generation IoT-Driven health care 4.0 systems. Wireless Personal Communications, 127(4), 3533–3613. https://doi.org/10.1007/s11277-022-09932-3
Babar, M., Arif, F., & Irfan, M. (2019). Internet of Things–Based Smart City Environments Using Big Data Analytics: A survey. In EAI/Springer Innovations in Communication and Computing (pp. 129–138). https://doi.org/10.1007/978-3-319-99966-1_12
Bandyopadhyay, D., & Sen, J. (2011). Internet of Things: Applications and Challenges in Technology and standardization. Wireless Personal Communications, 58(1), 49–69. https://doi.org/10.1007/s11277-011-0288-5
Batko, K., & Slezak, A. (2022). The use of Big Data Analytics in healthcare. Journal of Big Data, 9(1), 3. https://doi.org/10.1186/s40537-021-00553-4
Bayerstadler, A., Van Dijk, L., & Winter, F. (2016). Bayesian multinomial latent variable modeling for fraud and abuse detection in health insurance. Insurance Mathematics and Economics, 71, 244–252. https://doi.org/10.1016/j.insmatheco.2016.09.013
Cho, H. N., Ahn, I., Gwon, H., Kang, H. J., Kim, Y., Seo, H., Choi, H., Kim, M., Han, J., Kee, G., Jun, T. J., & Kim, Y. (2022). Heterogeneous graph construction and HinSAGE learning from electronic medical records. Scientific Reports, 12(1), 21152. https://doi.org/10.1038/s41598-022-25693-2
Deepa, N., & Prabadevi, B. (2020). Advanced Machine Learning for enterprise IoT modeling. In EAI/Springer Innovations in Communication and Computing (pp. 99–121). https://doi.org/10.1007/978-3-030-44407-5_5
Ekin, T., Ieva, F., Ruggeri, F., & Soyer, R. (2018). Statistical Medical Fraud Assessment: exposition to an Emerging field. International Statistical Review, 86(3), 379–402. https://doi.org/10.1111/insr.12269
Gangavarapu, T., Jaidhar, C. D., & Chanduka, B. (2020). Applicability of machine learning in spam and phishing email filtering: review and approaches. Artificial Intelligence Review, 53(7), 5019–5081. https://doi.org/10.1007/s10462-020-09814-9
Gourisaria, M. K., Agrawal, R., Singh, V., Rautaray, S. S., & Pandey, M. (2022). AI and IoT Enabled Smart Hospital Management Systems. In Studies in big data (pp. 77–106). https://doi.org/10.1007/978-981-19-5154-1_6
Gupta, A., & Gupta, S. K. (2022). Flying through the secure fog: A complete study on UAV-Fog in heterogeneous networks. International Journal of Communication Systems, 35(13). https://doi.org/10.1002/dac.5237
Höchtl, J., Parycek, P., & Schöllhammer, R. (2015). Big data in the policy cycle: Policy decision making in the digital era. Journal of Organizational Computing and Electronic Commerce, 26(1–2), 147–169. https://doi.org/10.1080/10919392.2015.1125187
Jahan, T. (2021). Machine Learning with IoT and Big Data in Healthcare. In EAI/Springer Innovations in Communication and Computing (pp. 81–98). https://doi.org/10.1007/978-3-030-67051-1_5
Kumar, Y., Sood, K., Kaul, S., & Vasuja, R. (2019). Big data analytics and its benefits in healthcare. In Studies in big data (pp. 3–21). https://doi.org/10.1007/978-3-030-31672-3_1
Mathew, S. S., Hayawi, K., Dawit, N. A., Taleb, I., & Trabelsi, Z. (2022). Integration of blockchain and collaborative intrusion detection for secure data transactions in industrial IoT: a survey. Cluster Computing, 25(6), 4129–4149. https://doi.org/10.1007/s10586-022-03645-9
Mehta, S., Bhushan, B., & Kumar, R. (2022). Machine Learning Approaches for Smart City Applications: Emergence, challenges and opportunities. In Intelligent systems reference library (pp. 147–163). https://doi.org/10.1007/978-3-030-90119-6_12
Mondal, K. K., & Roy, D. G. (2021). IoT Data Security with Machine Learning Blckchain: Risks and Countermeasures. In Signals and communication technology (pp. 49–81). https://doi.org/10.1007/978-981-16-6186-0_3
Monteiro, A. C. B., França, R. P., Arthur, R., & Iano, Y. (2021). An Overview of Artificial Intelligence Technology Directed at Smart Sensors and Devices from a Modern Perspective. In Studies in big data (pp. 3–26). https://doi.org/10.1007/978-3-030-77214-7_1
Rao, N. T., Bhattacharyya, D., & Joshua, E. S. N. (2022). An extensive discussion on utilization of data security and big data models for resolving healthcare problems. In Elsevier eBooks (pp. 311–324). https://doi.org/10.1016/b978-0-323-90032-4.00001-8
Rehman, A., Naz, S., & Razzak, I. (2021). Leveraging big data analytics in healthcare enhancement: trends, challenges and opportunities. Multimedia Systems, 28(4), 1339–1371. https://doi.org/10.1007/s00530-020-00736-8
Saha, A., Chowdhury, C., Jana, M., & Biswas, S. (2020). IoT sensor data analysis and fusion applying machine learning and Meta-Heuristic approaches. In Studies in computational intelligence (pp. 441–469). https://doi.org/10.1007/978-3-030-52067-0_20
Sakly, H., Said, M., Seekins, J., & Tagina, M. (2022). Big data and artificial intelligence for E-Health. In Integrated science (pp. 525–544). https://doi.org/10.1007/978-3-030-96814-4_23
Saravanan, K., Julie, E. G., & Robinson, Y. H. (2018). Smart Cities & IoT: Evolution of Applications, Architectures & Technologies, Present Scenarios & Future Dream. In Intelligent systems reference library (pp. 135–151). https://doi.org/10.1007/978-3-030-04203-5_7
Sharma, D. K., Bhargava, S., & Singhal, K. (2020). Internet of Things applications in the pharmaceutical industry. In Elsevier eBooks (pp. 153–190). https://doi.org/10.1016/b978-0-12-821326-1.00006-1
Singh, N., Lai, K., Vejvar, M., & Cheng, T. C. E. (2019). Data-driven auditing: A predictive modeling approach to fraud detection and classification. Journal of Corporate Accounting & Finance, 30(3), 64–82. https://doi.org/10.1002/jcaf.22389
Tantalaki, N., Souravlas, S., & Roumeliotis, M. (2019). A review on big data real-time stream processing and its scheduling techniques. International Journal of Parallel Emergent and Distributed Systems, 35(5), 571–601. https://doi.org/10.1080/17445760.2019.1585848
Tomar, A., Malik, H., Kumr, P., & Iqbal, A. (2022). Editorial: Machine Learning, Advances in Computing, Renewable Energy and Communication (MARC). Lecture Notes in Electrical Engineering, 1–19. https://doi.org/10.1007/978-981-19-2828-4_1
Vidhyalakshmi, A., & Priya, C. (2020). Medical big data mining and processing in e-health care. In Elsevier eBooks (pp. 1–30). https://doi.org/10.1016/b978-0-12-821326-1.00001-2
Voda, A. I., & Radu, L. (2019). How can artificial intelligence respond to smart cities challenges? In Elsevier eBooks (pp. 199–216). https://doi.org/10.1016/b978-0-12-816639-0.00012-0
Wang, R., Luo, M., Wen, Y., Wang, L., Choo, K. R., & He, D. (2021). The applications of blockchain in artificial intelligence. Security and Communication Networks, 2021, 1–16. https://doi.org/10.1155/2021/6126247
Zafari, B., Ekin, T., & Ruggeri, F. (2021). Multicriteria decision frontiers for prescription anomaly detection over time. Journal of Applied Statistics, 49(14), 3638–3658. https://doi.org/10.1080/02664763.2021.1959528