References
A. R., N., & G. K., R. (2024). A deep learning and docking simulation-based virtual screening strategy enables the rapid identification of HIF-1α pathway activators from a marine natural product database. Journal of Biomolecular Structure and Dynamics, 42(2), 629–651. https://doi.org/10.1080/07391102.2023.2194997
Bahmad, H. F., Chalhoub, R. M., Harati, H., Bou-Gharios, J., Assi, S., Ballout, F., Monzer, A., Msheik, H., Araji, T., Elajami, M. K., Ghanem, P., Chamaa, F., Kadara, H., Abou-Antoun, T., Daoud, G., Fares, Y., & Abou-Kheir, W. (2021). Tideglusib attenuates growth of neuroblastoma cancer stem/progenitor cells in vitro and in vivo by specifically targeting GSK-3β. Pharmacological Reports, 73(1), 211–226. https://doi.org/10.1007/s43440-020-00162-7
Ban, K. C., Singh, H., Krishnan, R., & Seow, H. F. (2003). GSK-3β phosphorylation and alteration of β-catenin in hepatocellular carcinoma. Cancer Letters, 199(2), 201–208. https://doi.org/10.1016/S0304-3835(03)00421-X
Butt, S. S., Badshah, Y., Shabbir, M., & Rafiq, M. (2020). Molecular Docking Using Chimera and Autodock Vina Software for Nonbioinformaticians. JMIR Bioinformatics and Biotechnology, 1(1), e14232. https://doi.org/10.2196/14232
Caldwell, B., Aldington, S., Weatherall, M., Shirtcliffe, P., & Beasley, R. (2006). Risk of Cardiovascular Events and Celecoxib: a Systematic Review and Meta-Analysis. Journal of the Royal Society of Medicine, 99(3), 132–140. https://doi.org/10.1177/014107680609900315
Cervello, M., Bachvarov, D., Cusimano, A., Sardina, F., Azzolina, A., Lampiasi, N., Giannitrapani, L., McCubrey, J. A., & Montalto, G. (2011). COX-2-Dependent and COX-2-Independent Mode of Action of Celecoxib in Human Liver Cancer Cells. OMICS: A Journal of Integrative Biology, 15(6), 383–392. https://doi.org/10.1089/omi.2010.0092
Chatterjee, S. (2016). Oxidative Stress, Inflammation, and Disease. In Oxidative Stress and Biomaterials (pp. 35–58). Elsevier. https://doi.org/10.1016/B978-0-12-803269-5.00002-4
Chen, J., Yu, Y., Ji, T., Ma, R., Chen, M., Li, G., Li, F., Ding, Q., Kang, Q., Huang, D., Liang, X., Lin, H., & Cai, X. (2016). Clinical implication of Keap1 and phosphorylated Nrf2 expression in hepatocellular carcinoma. Cancer Medicine, 5(10), 2678–2687. https://doi.org/10.1002/cam4.788
Chimal-Ramírez, G. K., Espinoza-Sanchez, N. A., & Fuentes-Panana, E. M. (2015). A Role for the Inflammatory Mediators Cox-2 and Metalloproteinases in Cancer Stemness. Anti-Cancer Agents in Medicinal Chemistry, 15(7), 837–855. https://doi.org/10.2174/1871520615666150318100822
Deldar Abad Paskeh, M., Mirzaei, S., Ashrafizadeh, M., Zarrabi, A., & Sethi, G. (2021). Wnt/β-Catenin Signaling as a Driver of Hepatocellular Carcinoma Progression: An Emphasis on Molecular Pathways. Journal of Hepatocellular Carcinoma, Volume 8, 1415–1444. https://doi.org/10.2147/JHC.S336858
Dhanasekaran, R., Bandoh, S., & Roberts, L. R. (2016). Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research, 5, 879. https://doi.org/10.12688/f1000research.6946.1
Duan, J., Wu, Y., Liu, J., Zhang, J., Fu, Z., Feng, T., Liu, M., Han, J., Li, Z., & Chen, S. (2019). <p>Genetic Biomarkers For Hepatocellular Carcinoma In The Era Of Precision Medicine</p>. Journal of Hepatocellular Carcinoma, Volume 6, 151–166. https://doi.org/10.2147/JHC.S224849
Dubbink, H. J., Hollink, I. H. I. M., Avenca Valente, C., Wang, W., Liu, P., Doukas, M., van Noesel, M. M., Dinjens, W. N. M., Wagner, A., & Smits, R. (2018). A novel tissue-based ß-catenin gene and immunohistochemical analysis to exclude familial adenomatous polyposis among children with hepatoblastoma tumors. Pediatric Blood & Cancer, 65(6). https://doi.org/10.1002/pbc.26991
El-Serag, H. B. (2020). Epidemiology of Hepatocellular Carcinoma. In The Liver (pp. 758–772). Wiley. https://doi.org/10.1002/9781119436812.ch59
Fabregat, I. (2009). Dysregulation of apoptosis in hepatocellular carcinoma cells. World Journal of Gastroenterology, 15(5), 513. https://doi.org/10.3748/wjg.15.513
He, K., & Gan, W.-J. (2023). Wnt/β-Catenin Signaling Pathway in the Development and Progression of Colorectal Cancer. Cancer Management and Research, Volume 15, 435–448. https://doi.org/10.2147/CMAR.S411168
Jankowska, A., Satala, G., Bojarski, A. J., Pawlowski, M., & Chlon-Rzepa, G. (2021). Multifunctional Ligands with Glycogen Synthase Kinase 3 Inhibitory Activity as a New Direction in Drug Research for Alzheimer’s Disease. Current Medicinal Chemistry, 28(9), 1731–1745. https://doi.org/10.2174/0929867327666200427100453
Kosorok, M. R., & Laber, E. B. (2019). Precision Medicine. Annual Review of Statistics and Its Application, 6(1), 263–286. https://doi.org/10.1146/annurev-statistics-030718-105251
Ladd, A. D., Duarte, S., Sahin, I., & Zarrinpar, A. (2024). Mechanisms of drug resistance in HCC. Hepatology, 79(4), 926–940. https://doi.org/10.1097/HEP.0000000000000237
Leung, R. W. H., & Lee, T. K. W. (2022). Wnt/β-Catenin Signaling as a Driver of Stemness and Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers, 14(21), 5468. https://doi.org/10.3390/cancers14215468
Li, Q. K., Singh, A., Biswal, S., Askin, F., & Gabrielson, E. (2011). KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma. Journal of Human Genetics, 56(3), 230–234. https://doi.org/10.1038/jhg.2010.172
Li, S., Lavrijsen, M., Bakker, A., Magierowski, M., Magierowska, K., Liu, P., Wang, W., Peppelenbosch, M. P., & Smits, R. (2020). Commonly observed RNF43 mutations retain functionality in attenuating Wnt/β-catenin signaling and unlikely confer Wnt-dependency onto colorectal cancers. Oncogene, 39(17), 3458–3472. https://doi.org/10.1038/s41388-020-1232-5
LI, T., ZHONG, J., DONG, X., XIU, P., WANG, F., WEI, H., WANG, X., XU, Z., LIU, F., SUN, X., & LI, J. (2016). Meloxicam suppresses hepatocellular carcinoma cell proliferation and migration by targeting COX-2/PGE2-regulated activation of the β-catenin signaling pathway. Oncology Reports, 35(6), 3614–3622. https://doi.org/10.3892/or.2016.4764
Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., & Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cellular and Molecular Life Sciences, 73(17), 3221–3247. https://doi.org/10.1007/s00018-016-2223-0
M. M. H Shabuj, & Tufael. (2019). Advancing Personalized Treatment for Hepatocellular Carcinoma: Integrating Targeted Therapies, Precision Medicine, and Bioengineering for Improved Outcomes. Journal of Primeasia, 1.2(1), 1–14. https://doi.org/10.25163/primeasia.1110015
Md Abu Bakar Siddique, & Asim Debnath. (2018). Advancing Medical Science through Nanobiotechnology: Prospects, Applications, and Future Directions. Journal of Primeasia, 1(1), 1–10. https://doi.org/10.25163/primeasia.1110163
Mvondo, J. G. M., Matondo, A., Mawete, D. T., Bambi, S.-M. N., Mbala, B. M., & Lohohola, P. O. (2021). In Silico ADME/T Properties of Quinine Derivatives using SwissADME and pkCSM Webservers. International Journal of TROPICAL DISEASE & Health, 1–12. https://doi.org/10.9734/ijtdh/2021/v42i1130492
Pérez-Alvarez, I., Islas-Flores, H., Gómez-Oliván, L. M., & García, O. D. (2020). Teratogenesis and Embryotoxicity Induced by Non-steroidal Anti-Inflammatory Drugs in Aquatic Organisms (pp. 115–129). https://doi.org/10.1007/698_2020_545
Rojas, A., Chen, D., Ganesh, T., Varvel, N. H., & Dingledine, R. (2019). The COX-2/prostanoid signaling cascades in seizure disorders. Expert Opinion on Therapeutic Targets, 23(1), 1–13. https://doi.org/10.1080/14728222.2019.1554056
Sajadimajd, S., & Khazaei, M. (2018). Oxidative Stress and Cancer: The Role of Nrf2. Current Cancer Drug Targets, 18(6), 538–557. https://doi.org/10.2174/1568009617666171002144228
Tufael. (2024). Hepatocellular Carcinoma in a 55-Year-Old with Chronic Hepatitis B: A Case Report on Diagnosis and Management. Asia Pacific Journal of Cancer Research, 1(1). https://doi.org/10.70818/apjcr.2024.v01i01.07
Tufael, & Auditi Kar. (2024). Diagnostic Efficacy of Tumor Markers AFP, CA19-9, and CEA in Hepatocellular Carcinoma Patients. Journal of Angiotherapy, 8(4). https://doi.org/10.25163/angiotherapy.849513
Tufael, & Md Mostafizur Rahman. (2024). Combined Biomarkers for Early Diagnosis of Hepatocellular Carcinoma. Journal of Angiotherapy, 8(5). https://doi.org/10.25163/angiotherapy.859665
Tufael1, & Atiqur Rahman Sunny. (2023). Artificial Intelligence in Addressing Cost, Efficiency, and Access Challenges in Healthcare. Journal of Primeasia, 4(1), 1–5. https://doi.org/10.25163/primeasia.419798
Verras, M., & Sun, Z. (2006). Roles and regulation of Wnt signaling and β-catenin in prostate cancer. Cancer Letters, 237(1), 22–32. https://doi.org/10.1016/j.canlet.2005.06.004
Wang, J., Cho, N. L., Zauber, A. G., Hsu, M., Dawson, D., Srivastava, A., Mitchell-Richards, K. A., Markowitz, S. D., & Bertagnolli, M. M. (2018). Chemopreventive Efficacy of the Cyclooxygenase-2 (Cox-2) Inhibitor, Celecoxib, Is Predicted by Adenoma Expression of Cox-2 and 15-PGDH. Cancer Epidemiology, Biomarkers & Prevention, 27(7), 728–736. https://doi.org/10.1158/1055-9965.EPI-17-0573
Xu, D., Xu, M., Jeong, S., Qian, Y., Wu, H., Xia, Q., & Kong, X. (2019). The Role of Nrf2 in Liver Disease: Novel Molecular Mechanisms and Therapeutic Approaches. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.01428
Xu, X., Huang, H., Tu, Y., Sun, J., Xiong, Y., Ma, C., Qin, S., Hu, W., & Zhou, J. (2021). Celecoxib Alleviates Radiation-Induced Brain Injury in Rats by Maintaining the Integrity of Blood-Brain Barrier. Dose-Response, 19(2). https://doi.org/10.1177/15593258211024393
Zhang, S., Gao, W., Tang, J., Zhang, H., Zhou, Y., Liu, J., Chen, K., Liu, F., Li, W., To, S. K. Y., Wong, A. S. T., Zhang, X., Zhou, H., & Zeng, J.-Z. (2020). The Roles of GSK-3β in Regulation of Retinoid Signaling and Sorafenib Treatment Response in Hepatocellular Carcinoma. Theranostics, 10(3), 1230–1244. https://doi.org/10.7150/thno.38711
Zhu, Y., & Hu, X. (2022). Molecular Recognition of FDA-Approved Small Molecule Protein Kinase Drugs in Protein Kinases. Molecules, 27(20), 7124. https://doi.org/10.3390/molecules27207124