References
Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Saleh, K. B., Badreldin, H. A., Yami, M. S. A., Harbi, S. A., & Albekairy, A. M. (2023b). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Medical Education, 23(1). https://doi.org/10.1186/s12909-023-04698-z
Amann, J., Blasimme, A., Vayena, E., Frey, D., & Madai, V. I. (2020b). Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Medical Informatics and Decision Making, 20(1). https://doi.org/10.1186/s12911-020-01332-6
Amrani, Y. A., Lazaar, M., & Kadiri, K. E. E. (2018). Random Forest and Support Vector Machine based Hybrid Approach to Sentiment Analysis. Procedia Computer Science, 127, 511–520. https://doi.org/10.1016/j.procs.2018.01.150
Borges, A., & Carvalho, M. (2025). Short- and long-term financial distress prediction in SMEs: a survival model comparison. Journal of Applied Statistics, 1–30. https://doi.org/10.1080/02664763.2025.2501166
Boyer, K. K., Olson, J. R., Calantone, R. J., & Jackson, E. C. (2002). Print versus electronic surveys: a comparison of two data collection methodologies. Journal of Operations Management, 20(4), 357–373. https://doi.org/10.1016/s0272-6963(02)00004-9
Brown, C. L., Cavusgil, S. T., & Lord, A. W. (2014). Country-risk measurement and analysis: A new conceptualization and managerial tool. International Business Review, 24(2), 246–265. https://doi.org/10.1016/j.ibusrev.2014.07.012
Dong, W., Liao, S., & Zhang, Z. (2018). Leveraging financial social media data for corporate fraud detection. Journal of Management Information Systems, 35(2), 461–487. https://doi.org/10.1080/07421222.2018.1451954
Ellis, L., Haldane, A., & Moshirian, F. (2014). Systemic risk, governance and global financial stability. Journal of Banking & Finance, 45, 175–181. https://doi.org/10.1016/j.jbankfin.2014.04.012
Fang, B., & Zhang, P. (2016). Big data in finance. In Springer eBooks (pp. 391–412). https://doi.org/10.1007/978-3-319-27763-9_11
Gomber, P., Kauffman, R. J., Parker, C., & Weber, B. W. (2018). On the Fintech Revolution: Interpreting the Forces of Innovation, Disruption, and Transformation in Financial Services. Journal of Management Information Systems, 35(1), 220–265. https://doi.org/10.1080/07421222.2018.1440766
Hassija, V., Chamola, V., Mahapatra, A., Singal, A., Goel, D., Huang, K., Scardapane, S., Spinelli, I., Mahmud, M., & Hussain, A. (2023). Interpreting Black-Box Models: A review on Explainable Artificial intelligence. Cognitive Computation, 16(1), 45–74. https://doi.org/10.1007/s12559-023-10179-8
Huang, X., Zhou, H., & Zhu, H. (2009). A framework for assessing the systemic risk of major financial institutions. Journal of Banking & Finance, 33(11), 2036–2049. https://doi.org/10.1016/j.jbankfin.2009.05.017
Huang, X., Zhou, H., & Zhu, H. (2009b). A framework for assessing the systemic risk of major financial institutions. Journal of Banking & Finance, 33(11), 2036–2049. https://doi.org/10.1016/j.jbankfin.2009.05.017
Kapoor, K. K., Tamilmani, K., Rana, N. P., Patil, P., Dwivedi, Y. K., & Nerur, S. (2017). Advances in social Media Research: past, present and future. Information Systems Frontiers, 20(3), 531–558. https://doi.org/10.1007/s10796-017-9810-y
Kovac, N., Ratkovic, K., Farahani, H., & Watson, P. (2024). A practical applications guide to machine learning regression models in psychology with Python. Methods in Psychology, 11, 100156. https://doi.org/10.1016/j.metip.2024.100156
Lee, I., & Shin, Y. J. (2019). Machine learning for enterprises: Applications, algorithm selection, and challenges. Business Horizons, 63(2), 157–170. https://doi.org/10.1016/j.bushor.2019.10.005
Li, L., Goh, T., & Jin, D. (2018). How textual quality of online reviews affect classification performance: a case of deep learning sentiment analysis. Neural Computing and Applications, 32(9), 4387–4415. https://doi.org/10.1007/s00521-018-3865-7
M, V. S., & Prashar, A. (2022). State and citizen responsiveness in fighting a pandemic crisis: A systems thinking perspective. Systems Research and Behavioral Science, 40(1), 170–193. https://doi.org/10.1002/sres.2849
Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C. L. (2014). Text mining for market prediction: A systematic review. Expert Systems With Applications, 41(16), 7653–7670. https://doi.org/10.1016/j.eswa.2014.06.009
Ravi, V., & Kamaruddin, S. (2017). Big data analytics enabled smart financial services: Opportunities and challenges. In Lecture notes in computer science (pp. 15–39). https://doi.org/10.1007/978-3-319-72413-3_2
Robisco, A. A., & Martínez, J. M. C. (2022). Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction. Financial Innovation, 8(1). https://doi.org/10.1186/s40854-022-00366-1
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818. https://doi.org/10.1016/j.oregeorev.2015.01.001
Solinska-Nowak, A., Magnuszewski, P., Curl, M., French, A., Keating, A., Mochizuki, J., Liu, W., Mechler, R., Kulakowska, M., & Jarzabek, L. (2018). An overview of serious games for disaster risk management – Prospects and limitations for informing actions to arrest increasing risk. International Journal of Disaster Risk Reduction, 31, 1013–1029. https://doi.org/10.1016/j.ijdrr.2018.09.001
Sun, Y., Liu, L., Xu, Y., Zeng, X., Shi, Y., Hu, H., Jiang, J., & Abraham, A. (2024). Alternative data in finance and business: emerging applications and theory analysis (review). Financial Innovation, 10(1). https://doi.org/10.1186/s40854-024-00652-0
Thysen, S. M., Tawiah, C., Blencowe, H., Manu, G., Akuze, J., Haider, M. M., Alam, N., Yitayew, T. A., Baschieri, A., Biks, G. A., Dzabeng, F., Fisker, A. B., Imam, M. A., Martins, J. S. D., Natukwatsa, D., Lawn, J. E., & Gordeev, V. S. (2021). Electronic data collection in a multi-site population-based survey: EN-INDEPTH study. Population Health Metrics, 19(S1). https://doi.org/10.1186/s12963-020-00226-z
Wang, Z., Cai, Y., Liu, D., Qiu, F., Sun, F., & Zhou, Y. (2023). Intelligent classification of coal structure using multinomial logistic regression, random forest and fully connected neural network with multisource geophysical logging data. International Journal of Coal Geology, 268, 104208. https://doi.org/10.1016/j.coal.2023.104208
Weber, R. F. (2012). Structural regulation as antidote to complexity capture. American Business Law Journal, 49(3), 643–738. https://doi.org/10.1111/j.1744-1714.2012.01140.x
Wu, L., Chen, S., Guo, L., Shpyleva, S., Harris, K., Fahmi, T., Flanigan, T., Tong, W., Xu, J., & Ren, Z. (2022). Development of benchmark datasets for text mining and sentiment analysis to accelerate regulatory literature review. Regulatory Toxicology and Pharmacology, 137, 105287. https://doi.org/10.1016/j.yrtph.2022.105287
Xing, F. Z., Cambria, E., & Welsch, R. E. (2017). Natural language based financial forecasting: a survey. Artificial Intelligence Review, 50(1), 49–73. https://doi.org/10.1007/s10462-017-9588-9
Zheludev, I., Smith, R., & Aste, T. (2014). When can social media lead financial markets? Scientific Reports, 4(1). https://doi.org/10.1038/srep04213