References
Ain, Q. U., Nazir, R., Nawaz, A., Shahbaz, H., Dilshad, A., Mufti, I. U., & Iftikhar, M. (2024). Machine learning approach towards quality assurance, challenges and possible strategies in laboratory medicine. J Clin Transl Pathol, 4(2), 76-87.
https://doi.org/10.14218/JCTP.2023.00061
Akter, L., Mondal, R. S., & Bhuiyan, M. N. A. (2025). Artificial Intelligence Application in Public Health: Advancement and Associated Challenges. Journal of Primeasia, 6(1), 1-10. https://doi.org/10.25163/primeasia.6110325
Alahmri, M. N. S., Alshehri, A. M. A., Gazwani, H. A. Y., & Alsemari, S. A. S. (2024). The role of automation in modern clinical laboratories. Tec Empresarial, 6(2), 762-773.
Alsaedi, A. S. A., Alharbi, N. A. H., Alamri, T. D., Alawamer, A. M., Al Jabri, A. T., Homeda, A., & Alsharef, A. F. (2024). The role of predictive analytics in theoretical modeling of clinical laboratory workflow optimization. Journal of International Crisis and Risk Communication Research, 7(S6), 1864. https://search.proquest.com/openview/c0e88a83331a13e4517aac2421716407/1?pq-origsite=gscholar&cbl=6480378
Alsharari, I. S. A., Alsharari, A. M. D. A., & Alsharari, F. S. H. A. (2024). Quality control of laboratory medicine: Preventing errors for diagnostic reliability. Saudi Journal of Medicine and Public Health, 1(1), 114-123. https://www.saudijmph.com/index.php/pub/article/view/52
Amin, M. S., Rahman, A., & Rashid, M. J. (2025). AI in precision oncology: Revolutionizing early diagnosis, imaging, and targeted therapies. Paradise, 1(1). https://doi.org/10.25163/paradise.1110340
Amin, M. S., & Rahman, A. (2025). Integrative approaches of AI in personalised disease management: From diagnosis to drug delivery. Paradise, 1(1). https://doi.org/10.25163/paradise.1110339
Bhuiyan, M. N. A., Mondal, R. S., & Akter, L. (2025). Advancing cancer imaging with artificial intelligence: Clinical application and challenges. Primeasia, 6(1), 1-11. https://doi.org/10.25163/primeasia.6110322
Cabitza, F., & Banfi, G. (2018). Machine learning in laboratory medicine: Waiting for the flood? Clinical Chemistry and Laboratory Medicine, 56(4), 516–524.
https://doi.org/10.1515/cclm-2017-0565
Çubukçu, H. C., Topcu, D. I., & Yenice, S. (2024). Machine learning-based clinical decision support using laboratory data. Clinical Chemistry and Laboratory Medicine (CCLM), 62(5), 793-823. https://www.degruyterbrill.com/document/doi/10.1515/cclm-2023-1037/html
Hou, H., Zhang, R., & Li, J. (2024). Artificial intelligence in the clinical laboratory. Clinica Chimica Acta, 559, 119724. https://www.sciencedirect.com/science/article/pii/S0009898124019752
John, G. K., Favaloro, E. J., Austin, S., Islam, M. Z., & Santhakumar, A. B. (2025). From errors to excellence: the pre-analytical journey to improved quality in diagnostics. A scoping review. Clinical Chemistry and Laboratory Medicine (CCLM), 63(7), 1243-1259. https://www.degruyterbrill.com/document/doi/10.1515/cclm-2024-1277/html
Khokhar, M., Yadav, D., & Sharma, P. (2025). Transforming healthcare in the age of artificial intelligence: A new era of diagnostic excellence in laboratory medicine. Indian Journal of Clinical Biochemistry, 1-2. https://link.springer.com/article/10.1007/s12291-025-01315-2
Lin, Y., Spies, N. C., Zohner, K., McCoy, D., Zaydman, M. A., & Farnsworth, C. W. (2025). Pre-analytical phase errors constitute the vast majority of errors in clinical laboratory testing. Clinical Chemistry and Laboratory Medicine (CCLM). https://www.degruyterbrill.com/document/doi/10.1515/cclm-2025-0190/html
Lippi, G., Jackson, B., & Plebani, M. (2025). Improving diagnosis in health care: Laboratory medicine. Diagnosis. https://www.degruyterbrill.com/document/doi/10.1515/dx-2025-0052/html
Lippi, G., Mattiuzzi, C., & Favaloro, E. J. (2024). Artificial intelligence in the pre-analytical phase: State-of-the-art and future perspectives. Journal of Medical Biochemistry, 43(1), 1. https://pmc.ncbi.nlm.nih.gov/articles/PMC10943465/
Mondal, R. S., Akter, L., & Bhuiyan, M. N. A. (2024). Artificial Intelligence in Drug Development and Delivery: Opportunities, Challenges, and Future Directions. Journal of Angiotherapy, 8(1), 1-10. https://doi.org/10.25163/angiotherapy.8810326
Mondal, R. S., Bhuiyan, M. N. A., & Akter, L. (2025). AI-driven innovations in cancer research and personalized healthcare. Journal of Angiotherapy, 9(1), 1-10. https://doi.org/10.25163/angiotherapy.9110321
Mondal, R. S., Bhuiyan, M. N. A., & Akter, L. (2024). Machine learning for chronic disease predictive analysis for early intervention and personalized care. Applied IT & Engineering, 2(1), 1-11. https://doi.org/10.25163/engineering.2110301
Mondal, R. S., Akter, L., & Bhuiyan, M. N. A. (2025). Integrating AI and ML techniques in modern microbiology. Applied IT & Engineering, 3(1), 1-10. https://doi.net/10.25163/engineering.3110323
Olayanju, O. A., Awah, N. E., Mba, I. N., Okebalama, V., Hilary, O., & Odok, G. (2024). Artificial intelligence in laboratory medicine. Annals of Tropical Pathology, 15(2), 32-46. https://www.ajol.info/index.php/atp/article/view/288706
Pennestrì, F., & Banfi, G. (2022). Artificial intelligence in laboratory medicine: Fundamental ethical issues and normative key-points. Clinical Chemistry and Laboratory Medicine, 60(12), 1867–1874. https://doi.org/10.1515/cclm-2021-1353
Plebani, M. (2024). Harmonizing the post-analytical phase: Focus on the laboratory report. Clinical Chemistry and Laboratory Medicine (CCLM), 62(6), 1053-1062. https://www.degruyterbrill.com/document/doi/10.1515/cclm-2023-1402/html
Plebani, M., Cadamuro, J., Vermeersch, P., Jovicic, S., Ozben, T., Trenti, T., & Lippi, G. (2024). A vision for the future: Value-based laboratory medicine. Clinical Chemistry and Laboratory Medicine (CCLM), 62(12), 2373-2387. https://www.degruyterbrill.com/document/doi/10.1515/cclm-2024-1022/html
Siddique, M. A. B., Debnath, A., Nath, N. D., Biswash, M. A. R., & Tufael. (2018). Advancing medical science through nanobiotechnology: Prospects, applications, and future directions. Journal of Primeasia, 1(1), 1–7. https://doi.org/10.25163/primeasia.1110163
Tufael, & Rahman Sunny, A. (2022). Transforming healthcare with artificial intelligence: Innovations, applications, and future challenges. Journal of Primeasia, 3(1), 1–6. https://doi.org/10.25163/primeasia.319802
Tufael, Rahman Sunny, A., et al. (2023). Artificial intelligence in addressing cost, efficiency, and access challenges in healthcare. Journal of Primeasia, 4(1), 1–5. https://doi.org/10.25163/primeasia.419798
Vasilev, Y. A., Nanova, O. G., Vladzymyrskyy, A. V., Goldberg, A. S., Blokhin, I. A., & Reshetnikov, R. V. (2025). Systematic review of artificial intelligence solutions in laboratory medicine: Efficiency, application scenarios, and practical experience. Digital Diagnostics. https://jdigitaldiagnostics.com/DD/article/view/635349
Van Dis, E. A. M., Bollen, J., Zuidema, W., van Rooij, R., & Bockting, C. L. (2023). ChatGPT: Five priorities for research. Nature, 614(7947), 224–226. https://doi.org/10.1038/d41586-023-00288-7