References
Akter, L., Mondal, R. S., & Bhuiyan, M. N. A. (2025). Artificial Intelligence Application in Public Health: Advancement and Associated Challenges. Journal of Primeasia, 6(1), 1-10. https://doi.org/10.25163/primeasia.6110325
Amin, M. S., Rahman, A., & Rashid, M. J. (2025). AI in precision oncology: Revolutionizing early diagnosis, imaging and targeted therapies. Paradise, 1(1). https://doi.org/10.25163/paradise.1110340
Amin, M. S., & Rahman, A. (2025). Integrative approaches of AI in personalised disease management: From diagnosis to drug delivery. Paradise, 1(1). https://doi.org/10.25163/paradise.1110339
Agrawal, S., & Agrawal, J. (2015). Neural network techniques for cancer prediction: A survey. Procedia Computer Science, 60, 769–774. https://doi.org/10.1016/j.procs.2015.08.234
Ahmad, M., Khan, Z., Rahman, Z. U., Khattak, S. I., & Khan, Z. U. (2021). Can innovation shocks determine CO2 emissions (CO2e) in the OECD economies? A new perspective. Economics of Innovation and New Technology, 30(1), 89–109.
https://doi.org/10.1080/10438599.2019.1684643
Afolabi, L. O., Afolabi, M. O., Sani, M. M., et al. (2021). Exploiting the CRISPR-Cas9 gene-editing system for human cancers and immunotherapy. Clinical & Translational Immunology, 10(6), e1286. https://doi.org/10.1002/cti2.1286
Anderson, J. P., Parikh, J. R., Shenfeld, D. K., & Willke, R. J. (2016). Reverse engineering and evaluation of prediction models for progression to type 2 diabetes: An application of machine learning using electronic health records. Journal of Diabetes Science and Technology, 10(1), 6–18. https://doi.org/10.1177/1932296815620200
Bhinder, B., Gilvary, C., Madhukar, N. S., & Elemento, O. (2021). Artificial intelligence in cancer research and precision medicine. Cancer Discovery, 11(4), 900–915. https://doi.org/10.1158/2159-8290.CD-21-0090
Bhuiyan, M. N. A., Mondal, R. S., & Akter, L. (2025). Advancing cancer imaging with artificial intelligence: Clinical application and challenges. Primeasia, 6(1), 1-11. https://doi.org/10.25163/primeasia.6110322
Cao, J.-S., Li, Z.-Y., Chen, M.-Y., et al. (2021). Artificial intelligence in gastroenterology and hepatology: Status and challenges. World Journal of Gastroenterology, 27(16), 1664. https://doi.org/10.3748/wjg.v27.i16.1664
Dananjayan, S., & Raj, G. M. (2020). Artificial intelligence during a pandemic: The COVID-19 example. International Journal of Health Planning and Management, 35(5), 1260–1262. https://doi.org/10.1002/hpm.2987
Enshaei, A., Robson, C., & Edmondson, R. (2015). Artificial intelligence systems as prognostic and predictive tools in ovarian cancer. Annals of Surgical Oncology, 22(12), 3970–3975. https://doi.org/10.1245/s10434-015-4475-6
Esteva, A., Kuprel, B., Novoa, R. A., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056
Feng, H., Yang, B., Wang, J., et al. (2023). Identifying malignant breast ultrasound images using ViT-Patch. Applied Sciences, 13(6), 3489. https://doi.org/10.3390/app13063489
Gaur, K., & Jagtap, M. M. (2022). Role of artificial intelligence and machine learning in prediction, diagnosis, and prognosis of cancer. Cureus, 14(11), e31008. https://doi.org/10.7759/cureus.31008
Ghassemi, M., Naumann, T., Schulam, P., Beam, A. L., Chen, I. Y., & Ranganath, R. (2019). Practical guidance on artificial intelligence for health-care data. The Lancet Digital Health, 1(4), e157–e159. https://doi.org/10.1016/S2589-7500(19)30084-6
Goldenberg, S. L., Nir, G., & Salcudean, S. E. (2019). A new era: Artificial intelligence and machine learning in prostate cancer. Nature Reviews Urology, 16(7), 391–403. https://doi.org/10.1038/s41585-019-0193-3
Harbeck, N., & Gnant, M. (2017). Breast cancer. The Lancet, 389(10074), 1134–1150. https://doi.org/10.1016/S0140-6736(16)31891-8
Hart, G. R., Roffman, D. A., Decker, R., & Deng, J. (2018). A multi-parameterized artificial neural network for lung cancer risk prediction. PLoS ONE, 13(10), e0205264. https://doi.org/10.1371/journal.pone.0205264
Hollon, T. C., Pandian, B., Adapa, A. R., et al. (2020). Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nature Medicine, 26(1), 52–58. https://doi.org/10.1038/s41591-019-0715-9
Hu, F., Shi, X., Wang, H., et al. (2021). Is health contagious? Based on empirical evidence from China family panel studies’ data. Frontiers in Public Health, 9, 691746. https://doi.org/10.3389/fpubh.2021.691746
Huang, S., Yang, J., Fong, S., & Zhao, Q. (2020). Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Letters, 471, 61–71. https://doi.org/10.1016/j.canlet.2019.12.007
Iqbal, M. J., Javed, Z., Sadia, H., et al. (2021). Clinical applications of artificial intelligence and machine learning in cancer diagnosis: Looking into the future. Cancer Cell International, 21(1), 1–11. https://doi.org/10.1186/s12935-021-01981-1
Jianzhu, B., Shuang, L., Pengfei, M., Yi, Z., & Yanshu, Z. (2021). Research on early warning mechanism and model of liver cancer rehabilitation based on CS-SVM. Journal of Healthcare Engineering, 2021, 6658776. https://doi.org/10.1155/2021/6658776
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
Jovel, J., & Greiner, R. (2021). An introduction to machine learning approaches for biomedical research. Frontiers in Medicine, 8, 689489. https://doi.org/10.3389/fmed.2021.689489
Kumar, Y., Gupta, S., Singla, R., & Hu, Y.-C. (2021). A systematic review of artificial intelligence techniques in cancer prediction and diagnosis. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-021-09586-w
Liu, H., Liu, M., Li, D., Zheng, W., Yin, L., & Wang, R. (2022). Recent advances in pulse-coupled neural networks with applications in image processing. Electronics, 11(20), 3264. https://doi.org/10.3390/electronics11203264
McKinney, S. M., Sieniek, M., Godbole, V., et al. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94. https://doi.org/10.1038/s41586-019-1799-6
Mondal, R. S., Akter, L., & Bhuiyan, M. N. A. (2024). Artificial Intelligence in Drug Development and Delivery: Opportunities, Challenges, and Future Directions. Journal of Angiotherapy, 8(1), 1-10. https://doi.org/10.25163/angiotherapy.8810326
Mondal, R. S., Bhuiyan, M. N. A., & Akter, L. (2025). AI-driven innovations in cancer research and personalized healthcare. Journal of Angiotherapy, 9(1), 1-10. https://doi.org/10.25163/angiotherapy.9110321
Mondal, R. S., Bhuiyan, M. N. A., & Akter, L. (2024). Machine learning for chronic disease predictive analysis for early intervention and personalized care. Applied IT & Engineering, 2(1), 1-11. https://doi.org/10.25163/engineering.2110301
Mondal, R. S., Akter, L., & Bhuiyan, M. N. A. (2025). Integrating AI and ML techniques in modern microbiology. Applied IT & Engineering, 3(1), 1-10. https://doi.net/10.25163/engineering.3110323
Nartowt, B. J., Hart, G. R., Muhammad, W., Liang, Y., Stark, G. F., & Deng, J. (2020). Robust machine learning for colorectal cancer risk prediction and stratification. Frontiers in Big Data, 3, 6. https://doi.org/10.3389/fdata.2020.00006
Rana, M., Chandorkar, P., Dsouza, A., & Kazi, N. (2015). Breast cancer diagnosis and recurrence prediction using machine learning techniques. International Journal of Engineering Research and Technology, 4(4), 372–376. https://doi.org/10.15623/ijret.2015.0404066
Siddique, M. A. B., Debnath, A., Nath, N. D., Biswash, M. A. R., & Tufael. (2018). Advancing medical science through nanobiotechnology: Prospects, applications, and future directions. Journal of Primeasia, 1(1), 1–7. https://doi.org/10.25163/primeasia.1110163
Sidey-Gibbons, J. A. M., & Sidey-Gibbons, C. J. (2019). Machine learning in medicine: A practical introduction. BMC Medical Research Methodology, 19(1), 64. https://doi.org/10.1186/s12874-019-0681-4
Tufael, & Rahman Sunny, A. (2022). Transforming healthcare with artificial intelligence: Innovations, applications, and future challenges. Journal of Primeasia, 3(1), 1–6. https://doi.org/10.25163/primeasia.319802
Tufael, Rahman Sunny, A., et al. (2023). Artificial intelligence in addressing cost, efficiency, and access challenges in healthcare. Journal of Primeasia, 4(1), 1–5. https://doi.org/10.25163/primeasia.419798