References
Aljohani, A. (2023). Predictive analytics and machine learning for Real-Time supply chain risk mitigation and agility. Sustainability, 15(20), 15088. https://doi.org/10.3390/su152015088
Alnefaie, A., Kang, K., & Sohaib, O. (2023). Attitudes and Usage Intentions Towards Artificial Intelligence (Ai) Assistants in E-Commerce: A Mixed-Methods Investigation.https://doi.org/10.2139/ssrn.4657676
Baviskar, D., Ahirrao, S., Potdar, V., & Kotecha, K. (2021). Efficient automated processing of the unstructured documents using artificial intelligence: A systematic literature review and future directions. IEEE Access, 9, 72894–72936. https://doi.org/10.1109/access.2021.3072900
Chae, B. (2013). A complexity theory approach to IT-enabled services (IESs) and service innovation: Business analytics as an illustration of IES. Decision Support Systems, 57, 1–10. https://doi.org/10.1016/j.dss.2013.07.005
Delen, D., & Ram, S. (2018). Research challenges and opportunities in business analytics. Journal of Business Analytics, 1(1), 2–12. https://doi.org/10.1080/2573234x.2018.1507324
Etemad, H. (2025). Challenges of smaller entrepreneurial enterprises aiming to generate higher values by adopting artificial intelligence (AI) and competing in the rapidly evolving AI industry. Journal of International Entrepreneurship. https://doi.org/10.1007/s10843-025-00385-w
Helo, P., & Hao, Y. (2021). Artificial intelligence in operations management and supply chain management: an exploratory case study. Production Planning & Control, 33(16), 1573–1590. https://doi.org/10.1080/09537287.2021.1882690
Inuwa, M. M., & Das, R. (2024). A comparative analysis of various machine learning methods for anomaly detection in cyber-attacks on IoT networks. Internet of Things, 26, 101162. https://doi.org/10.1016/j.iot.2024.101162
Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy Artificial Intelligence. Government Information Quarterly, 37(3), 101493. https://doi.org/10.1016/j.giq.2020.101493
Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007
Kalishina, D. (2025). Deep learning architectures in Business Analytics: Unlocking hidden patterns in complex data streams. International Journal of Modern Achievement in Science, Engineering and Technology., 2(1), 133–145. https://doi.org/10.63053/ijset.64
Landset, S., Khoshgoftaar, T. M., Richter, A. N., & Hasanin, T. (2015). A survey of open source tools for machine learning with big data in the Hadoop ecosystem. Journal of Big Data, 2(1). https://doi.org/10.1186/s40537-015-0032-1
Lee, J., Singh, J., Azamfar, M., & Pandhare, V. (2020). Industrial AI and predictive analytics for smart manufacturing systems. In Smart Manufacturing (pp. 213–244). https://doi.org/10.1016/b978-0-12-820027-8.00008-3
Madhumita, G., Diana, P. D., Pc, N., Kiran, P. B. N., Aggarwal, S., & Nargunde, A. S. (2024). AI-powered Performance Management: Driving Employee Success and Organizational Growth., 204–209. https://doi.org/10.1109/icrtcst61793.2024.10578371
Manta-Costa, A., Araújo, S. O., Peres, R. S., & Barata, J. (2024). Machine learning applications in Manufacturing - challenges, trends, and future directions. IEEE Open Journal of the Industrial Electronics Society, 5, 1085–1103. https://doi.org/10.1109/ojies.2024.3431240
Mohamed, G. (2025). Comparative Analysis of AI-Driven Decision Support Systems and Traditional Spreadsheets: Evaluating Accuracy and Consistency in Business Intelligence. . https://doi.org/10.2139/ssrn.5187060
Okwor, I. A., Hitch, G., Hakkim, S., Akbar, S., Sookhoo, D., & Kainesie, J. (2024). Digital Technologies Impact on Healthcare Delivery: A Systematic Review of Artificial intelligence (AI) and Machine-Learning (ML) adoption, Challenges, and opportunities. AI, 5(4), 1918–1941. https://doi.org/10.3390/ai5040095
Pandarathodiyil, A. K., Mani, S. A., Veerabhadrappa, S. K., Danaee, M., & Zamzuri, A. T. B. (2024b). Cross-cultural validation of Malay version of perceived professionalism among dental patients. BDJ Open, 10(1). https://doi.org/10.1038/s41405-024-00234-3
Rane, N., Paramesha, M., Choudhary, S., & Rane, J. (2024). Business Intelligence through Artificial Intelligence: A Review. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4831916
Rane, N., Paramesha, M., Choudhary, S., & Rane, J. (2024a). Business intelligence and Business analytics with Artificial intelligence and machine learning: Trends, techniques, and opportunities. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4831920
Selvam, D. C., Devarajan, Y., & Raja, T. (2024). Exploring the potential of artificial intelligence in nuclear waste management: Applications, challenges, and future directions. Nuclear Engineering and Design, 431, 113719. https://doi.org/10.1016/j.nucengdes.2024.113719
Seo, C., Yoo, D., & Lee, Y. (2024b). Empowering Sustainable Industrial and Service Systems through AI-Enhanced Cloud Resource Optimization. Sustainability, 16(12), 5095. https://doi.org/10.3390/su16125095
Sharma, S., Gahlawat, V. K., Rahul, K., Mor, R. S., & Malik, M. (2021). Sustainable Innovations in the Food Industry through Artificial Intelligence and Big Data Analytics. Logistics, 5(4), 66. https://doi.org/10.3390/logistics5040066
Singh, R., & Bhanot, N. (2019). An integrated DEMATEL-MMDE-ISM based approach for analysing the barriers of IoT implementation in the manufacturing industry. International Journal of Production Research, 58(8), 2454–2476. https://doi.org/10.1080/00207543.2019.1675915
Sun, Z., Sun, L., & Strang, K. (2016). Big Data Analytics services for enhancing business intelligence. Journal of Computer Information Systems, 58(2), 162–169. https://doi.org/10.1080/08874417.2016.1220239
Syed, S. (2024). Integrating predictive Analytics into Manufacturing Finance: A case study on cost control and Zero-Carbon goals in automotive production. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5017983
Tim, N. E., Babalola, N. A., Kossidze, N. a. A., & Goriparthi, N. S. V. (2025). Integrating advanced information analysis techniques to enhance operational efficiency in business administration practices. World Journal of Advanced Research and Reviews, 25(1), 1275–1293. https://doi.org/10.30574/wjarr.2025.25.1.0157
Vatankhah, S., Bamshad, V., Arici, H. E., & Duan, Y. (2024). Ethical implementation of artificial intelligence in the service industries. Service Industries Journal, 44(9–10), 661–685. https://doi.org/10.1080/02642069.2024.2359077
Wamba-Taguimdje, S., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893–1924. https://doi.org/10.1108/bpmj-10-2019-0411
Yamani, A. M., Yusuf, N., & Al-Shabrawi, H. A. (2025). The impact of Artificial Intelligence on Management Decision-Making: Analyzing the Role of Data Analytical Skills and Entrepreneurial Orientation. European Journal of Sustainable Development, 14(2), 221. https://doi.org/10.14207/ejsd.2025.v14n2p221