References
Adus, S., Macklin, J., & Pinto, A. (2023). Exploring patient perspectives on how they can and should be engaged in the development of artificial intelligence (AI) applications in health care. BMC Health Services Research, 23(1). https://doi.org/10.1186/s12913-023-10098-2
Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Saleh, K. B., Badreldin, H. A., Yami, M. S. A., Harbi, S. A., & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Medical Education, 23(1). https://doi.org/10.1186/s12909-023-04698-z
Amann, J., Blasimme, A., Vayena, E., Frey, D., & Madai, V. I. (2020). Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Medical Informatics and Decision Making, 20(1). https://doi.org/10.1186/s12911-020-01332-6
Anantrasirichai, N., & Bull, D. (2021). Artificial intelligence in the creative industries: a review. Artificial Intelligence Review, 55(1), 589–656. https://doi.org/10.1007/s10462-021-10039-7
Azeema, N., Nawaz, H., Gill, M. A., Khan, M. A., Miraj, J., & Lodhi, K. (2023, December 5). Impact of artificial intelligence on financial markets: Possibilities & challenges. https://www.jcbi.org/index.php/Main/article/view/304
Bawack, R. E., Wamba, S. F., Carillo, K. D. A., & Akter, S. (2022). Artificial intelligence in E-Commerce: a bibliometric study and literature review. Electronic Markets, 32(1), 297–338. https://doi.org/10.1007/s12525-022-00537-z
Buxmann, P., Hess, T., & Thatcher, J. B. (2020). AI-Based Information Systems. Business & Information Systems Engineering, 63(1), 1–4. https://doi.org/10.1007/s12599-020-00675-8
Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00411-8
Cubric, M. (2020). Drivers, barriers and social considerations for AI adoption in business and management: A tertiary study. Technology in Society, 62, 101257. https://doi.org/10.1016/j.techsoc.2020.101257
Danese, P., & Kalchschmidt, M. (2010). The role of the forecasting process in improving forecast accuracy and operational performance. International Journal of Production Economics, 131(1), 204–214. https://doi.org/10.1016/j.ijpe.2010.09.006
Gomber, P., Koch, J., & Siering, M. (2017). Digital Finance and FinTech: current research and future research directions. Journal of Business Economics, 87(5), 537–580. https://doi.org/10.1007/s11573-017-0852-x
Gupta, S., Modgil, S., Bhattacharyya, S., & Bose, I. (2021). Artificial intelligence for decision support systems in the field of operations research: review and future scope of research. Annals of Operations Research, 308(1–2), 215–274. https://doi.org/10.1007/s10479-020-03856-6
Gupta, S., Modgil, S., Bhattacharyya, S., & Bose, I. (2021b). Artificial intelligence for decision support systems in the field of operations research: review and future scope of research. Annals of Operations Research, 308(1–2), 215–274. https://doi.org/10.1007/s10479-020-03856-6
Hangl, J., Krause, S., & Behrens, V. J. (2023). Drivers, barriers and social considerations for AI adoption in SCM. Technology in Society, 74, 102299. https://doi.org/10.1016/j.techsoc.2023.102299
Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. Nature Reviews. Cancer, 18(8), 500–510. https://doi.org/10.1038/s41568-018-0016-5
Jackson, I., & Ivanov, D. (2023). A beautiful shock? Exploring the impact of pandemic shocks on the accuracy of AI forecasting in the beauty care industry. Transportation Research Part E Logistics and Transportation Review, 180, 103360. https://doi.org/10.1016/j.tre.2023.103360
Jarrahi, M. H. (2018b). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007
Kaur, K., Kumar, Y., & Kaur, S. (2023). Artificial intelligence and machine learning in financial services to improve the business system. In Disruptive technologies and digital transformations for society 5.0 (pp. 3–30). https://doi.org/10.1007/978-981-99-5354-7_1
Lauriola, I., Lavelli, A., & Aiolli, F. (2021b). An introduction to Deep Learning in Natural Language Processing: Models, techniques, and tools. Neurocomputing, 470, 443–456. https://doi.org/10.1016/j.neucom.2021.05.103
Ledro, C., Nosella, A., & Pozza, I. D. (2023). Integration of AI in CRM: Challenges and guidelines. Journal of Open Innovation Technology Market and Complexity, 9(4), 100151. https://doi.org/10.1016/j.joitmc.2023.100151
Mahalakshmi, V., Kulkarni, N., Kumar, K. P., Kumar, K. S., Sree, D. N., & Durga, S. (2021). The Role of implementing Artificial Intelligence and Machine Learning Technologies in the financial services Industry for creating Competitive Intelligence. Materials Today Proceedings, 56, 2252–2255. https://doi.org/10.1016/j.matpr.2021.11.577
Milana, C., & Ashta, A. (2021). Artificial intelligence techniques in finance and financial markets: A survey of the literature. Strategic Change, 30(3), 189–209. https://doi.org/10.1002/jsc.2403
Milana, C., & Ashta, A. (2021b). Artificial intelligence techniques in finance and financial markets: A survey of the literature. Strategic Change, 30(3), 189–209. https://doi.org/10.1002/jsc.2403
Mokhtari, S., Yen, K. K., & Liu, J. (2021). Effectiveness of Artificial Intelligence in Stock Market Prediction based on Machine Learning. International Journal of Computer Applications, 183(7), 1–8. https://doi.org/10.5120/ijca2021921347
Nemati, H. R., Steiger, D. M., Iyer, L. S., & Herschel, R. T. (2002). Knowledge warehouse: an architectural integration of knowledge management, decision support, artificial intelligence and data warehousing. Decision Support Systems, 33(2), 143–161. https://doi.org/10.1016/s0167-9236(01)00141-5
Singh, A., & Weisse, B. A. (1998). Emerging stock markets, portfolio capital flows and long-term economie growth: Micro and macroeconomic perspectives. World Development, 26(4), 607–622. https://doi.org/10.1016/s0305-750x(98)00003-5
Spring, M., Faulconbridge, J., & Sarwar, A. (2022). How information technology automates and augments processes: Insights from Artificial-Intelligence-based systems in professional service operations. Journal of Operations Management, 68(6–7), 592–618. https://doi.org/10.1002/joom.1215
Vössing, M., Kühl, N., Lind, M., & Satzger, G. (2022). Designing transparency for effective Human-AI collaboration. Information Systems Frontiers, 24(3), 877–895. https://doi.org/10.1007/s10796-022-10284-3
Wamba, S. F., Guthrie, C., Queiroz, M. M., & Minner, S. (2023). ChatGPT and generative artificial intelligence: an exploratory study of key benefits and challenges in operations and supply chain management. International Journal of Production Research, 62(16), 5676–5696. https://doi.org/10.1080/00207543.2023.2294116
Weber, P., Carl, K. V., & Hinz, O. (2023). Applications of Explainable Artificial Intelligence in Finance—a systematic review of Finance, Information Systems, and Computer Science literature. Management Review Quarterly, 74(2), 867–907. https://doi.org/10.1007/s11301-023-00320-0