References
Akay, M. F. (2009). Support vector machines combined with feature selection for breast cancer diagnosis. Expert Systems with Applications, 36(2), 3240–3247. https://doi.org/10.1016/j.eswa.2008.01.009
Akter, L., Mondal, R. S., & Bhuiyan, M. N. A. (2025). Artificial intelligence application in public health: Advancement and associated challenges. Journal of Primeasia, 6(1), 1–10. https://doi.org/10.25163/primeasia.6110325
Ayer, T., Alagoz, O., Chhatwal, J., Shavlik, J. W., Kahn, C. E., & Burnside, E. S. (2010). Breast cancer risk estimation with artificial neural networks revisited. Cancer, 116(14), 3310–3321. https://doi.org/10.1002/cncr.25160
Bhuiyan, M. N. A., & Mondal, R. S. (2023). AI-driven predictive analytics in healthcare: Evaluating impact on cost and efficiency. Journal of Computational Analysis and Applications, 31(4).
Bhuiyan, M. N. A., Mondal, R. S., & Akter, L. (2025). Advancing cancer imaging with artificial intelligence: Clinical application and challenges. Journal of Primeasia, 6(1), 1–11. https://doi.org/10.25163/primeasia.6110322
Chang, S.-W., Abdul-Kareem, S., Merican, A. F., & Zain, R. B. (2013). Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods. BMC Bioinformatics, 14, 170. https://doi.org/10.1186/1471-2105-14-170
Chen, Y.-C., Ke, W.-C., & Chiu, H.-W. (2014). Risk classification of cancer survival using ANN with gene expression data from multiple laboratories. Computers in Biology and Medicine, 48, 1–7. https://doi.org/10.1016/j.compbiomed.2014.02.006
Cruz, J. A., & Wishart, D. S. (2006). Applications of machine learning in cancer prediction and prognosis. Cancer Informatics, 2, 59–77. https://doi.org/10.1177/117693510600200030
Domchek, S. M., Eisen, A., Calzone, K., Stopfer, J., Blackwood, A., & Weber, B. L. (2003). Application of breast cancer risk prediction models in clinical practice. Journal of Clinical Oncology, 21(4), 593–601. https://doi.org/10.1200/JCO.2003.07.007
Drier, Y., & Domany, E. (2011). Do two machine-learning-based prognostic signatures for breast cancer capture the same biological processes? PLoS ONE, 6(3), e17795. https://doi.org/10.1371/journal.pone.0017795
Dupuy, A., & Simon, R. M. (2007). Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. Journal of the National Cancer Institute, 99(2), 147–157. https://doi.org/10.1093/jnci/djk018
Ein-Dor, L., Zuk, O., & Domany, E. (2006). Thousands of samples are needed to generate a robust gene list for predicting outcomes in cancer. Proceedings of the National Academy of Sciences, 103(15), 5923–5928. https://doi.org/10.1073/pnas.0601231103
Eshlaghy, A. T., Poorebrahimi, A., Ebrahimi, M., Razavi, A. R., & Ahmad, L. G. (2013). Using three machine learning techniques for predicting breast cancer recurrence. Journal of Health & Medical Informatics, 4, 124.
Exarchos, K. P., Goletsis, Y., & Fotiadis, D. I. (2012). A multiscale and multiparametric approach for modelling the progression of oral cancer. BMC Medical Informatics and Decision Making, 12, 136. https://doi.org/10.1186/1472-6947-12-136
Exarchos, K. P., Goletsis, Y., & Fotiadis, D. I. (2012). Multiparametric decision support system for the prediction of oral cancer recurrence. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1127–1134. https://doi.org/10.1109/TITB.2011.2165076
Fortunato, O., Boeri, M., Verri, C., Conte, D., Mensah, M., & Suatoni, P. (2014). Assessment of circulating microRNAs in plasma of lung cancer patients. Molecules, 19(3), 3038–3054. https://doi.org/10.3390/molecules19033038
Gascon, F., Valle, M., Martos, R., Zafra, M., Morales, R., & Castaño, M. A. (2004). Childhood obesity and hormonal abnormalities associated with cancer risk. European Journal of Cancer Prevention, 13(3), 193–197. https://doi.org/10.1097/01.cej.0000130021.16182.c3
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013
Heneghan, H. M., Miller, N., & Kerin, M. J. (2010). miRNAs as biomarkers and therapeutic targets in cancer. Current Opinion in Pharmacology, 10(5), 543–550. https://doi.org/10.1016/j.coph.2010.05.010
Kim, W., Kim, K. S., Lee, J. E., Noh, D. Y., Kim, S. W., & Jung, Y. S. (2012). Development of novel breast cancer recurrence prediction model using support vector machine. Journal of Breast Cancer, 15(2), 230–238. https://doi.org/10.4048/jbc.2012.15.2.230
Kononenko, I. (2001). Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine, 23(1), 89–109. https://doi.org/10.1016/S0933-3657(01)00077-X
Koscielny, S. (2010). Why most gene expression signatures of tumors have not been useful in the clinic. Science Translational Medicine, 2(14), 14ps12. https://doi.org/10.1126/scitranslmed.3000313
Madhavan, D., Cuk, K., Burwinkel, B., & Yang, R. (2013). Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures. Frontiers in Genetics, 4, Article 116. https://doi.org/10.3389/fgene.2013.00116
Mondal, R. S., & Bhuiyan, M. N. A. (2024). Predictive analytics for chronic disease management: A machine learning approach to early intervention and personalised treatment. Journal of Computational Analysis and Applications, 33(8).
Mondal, R. S., Akter, L., & Bhuiyan, M. N. A. (2024). Artificial intelligence in drug development and delivery: Opportunities, challenges, and future directions. Journal of Angiotherapy, 8(1), 1–10. https://doi.org/10.25163/angiotherapy.8810326
Mondal, R. S., Akter, L., & Bhuiyan, M. N. A. (2025). Integrating AI and ML techniques in modern microbiology. Applied IT & Engineering, 3(1), 1–10. https://doi.org/10.25163/engineering.3110323
Mondal, R. S., Bhuiyan, M. N. A., & Akter, L. (2024). Machine learning for chronic disease predictive analysis for early intervention and personalized care. Applied IT & Engineering, 2(1), 1–11. https://doi.org/10.25163/engineering.2110301
Mondal, R. S., Bhuiyan, M. N. A., & Akter, L. (2025). AI-driven innovations in cancer research and personalized healthcare. Integrative Biomedical Research (Journal of Angiotherapy), 9(1), 1–10. https://doi.org/10.25163/angiotherapy.9110321
Mondal, R. S., Bhuiyan, M. N. A., Kamruzzaman, M., Saha, S., & Siddiki, M. S. (2025). A comparative analysis of outline of tools for data mining and big data mining. Journal of Business and Management Studies, 7(4), 232–242.
Mondal, R. S., Kamruzzaman, M., Saha, S., & Bhuiyan, M. N. A. (2025). Quantum machine learning approaches for high-dimensional cancer genomics data analysis. Computer Integrated Manufacturing Systems, 31(1), 13–32.
Niknejad, A., & Petrovic, D. (2013). Introduction to computational intelligence techniques and areas of their applications in medicine. Medical Applications of Artificial Intelligence, 51.
Park, C., Ahn, J., Kim, H., & Park, S. (2014). Integrative gene network construction to analyze cancer recurrence using semi-supervised learning. PLoS ONE, 9(2), e86309. https://doi.org/10.1371/journal.pone.0086309
Polley, M.-Y. C., Freidlin, B., Korn, E. L., Conley, B. A., Abrams, J. S., & McShane, L. M. (2013). Statistical and practical considerations for clinical evaluation of predictive biomarkers. Journal of the National Cancer Institute, 105(22), 1677–1683. https://doi.org/10.1093/jnci/djt282
Saha, S., Islam, M. K., Rahaman, M. A., & Mondal, R. S. (2024). Machine learning driven analytics for national security operations: A wavelet–stochastic signal detection framework. Journal of Computational Analysis and Applications, 33(8).
Saha, S., Siddiki, M. S., Mondal, R. S., Bhuiyan, M. N. A., & Kamruzzaman, M. (2025). Risk assessment of cyber security in the banking sector. Journal of Business and Management Studies, 7(4), 208–218.
Tufael, & Sunny, A. R. (2022). Transforming healthcare with artificial intelligence: Innovations, applications, and future challenges. Journal of Primeasia, 3(1), 1–6.
Tufael, A. R. S., Sunny, A. R., et al. (2023). Artificial intelligence in addressing cost, efficiency, and access challenges in healthcare. [Journal name missing], 4(1), 1–5.