References
Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105–121. https://doi.org/10.1016/j.jare.2013.07.006
Akiyama, H., Endo, T., Matsuda, H., & Katsumata, Y. (2007). Size effect of nanoparticles on the formation of complex coacervates. Journal of Colloid and Interface Science, 315(2), 390–397. https://doi.org/10.1016/j.jcis.2007.07.016
Arifin, D. R., & Lee, S. Y. (2021). Recent advancements in pH-responsive nanogel carriers for targeted drug delivery. Materials Science and Engineering: C, 126, 112335. https://doi.org/10.1016/j.msec.2021.112335
Bagalkot, V., Farokhzad, O. C., & Jon, S. (2006). Nanoparticles for drug delivery: pH-responsive carriers. Advanced Drug Delivery Reviews, 58(9), 1333-1344. https://doi.org/10.1016/j.addr.2006.09.002
Bhattacharya, S., & Kundu, S. C. (2020). pH-sensitive hydrogels and nanogels for drug delivery applications. Journal of Controlled Release, 322, 323-341. https://doi.org/10.1016/j.jconrel.2020.03.019
Chen, Y., Zhang, X., Li, Y., & Xie, S. (2017). Synthesis and characterization of poly(L-lysine isophthalamide) nanogels with functionalized amine groups for drug delivery. Journal of Nanoscience and Nanotechnology, 17(1), 324-330. https://doi.org/10.1166/jnn.2017.1358
Gao, Y., & Wu, C. (2021). Fabrication and application of pH-responsive nanocarriers for controlled drug delivery. Journal of Biomedical Nanotechnology, 17(5), 875-891. https://doi.org/10.1166/jbn.2021.3162
Gao, Y., Sun, X., Shen, J., Yu, S., Sun, C., & Xu, L. (2013). The potential of pH-sensitive nanogels in drug delivery. Colloids and Surfaces B: Biointerfaces, 103, 244–249. https://doi.org/10.1016/j.colsurfb.2012.10.042
Gu, X., Zhang, H., Xu, J., & Wu, W. (2013). Advances in drug delivery using nanogel systems: A review. European Journal of Pharmaceutical Sciences, 50(1), 1-11. https://doi.org/10.1016/j.ejps.2013.01.018
Jia, Y., Zhang, Y., Liu, X., & Wang, H. (2017). Theoretical and experimental study of the Schiff base formation between amines and aldehydes. Journal of Organic Chemistry, 82(16), 7321-7327. https://doi.org/10.1021/acs.joc.7b00722
Karimi, M., Ghasemi, A., Sahandi Zangabad, P., Rahighi, R., Basri, S. M. M., Mirshekari, H., ... & Hamblin, M. R. (2016b). Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chemical Society Reviews, 45(5), 1457–1501. https://doi.org/10.1039/C5CS00798D
Kepinska, M., Hwang, D., Youn, J., & Kim, J. (2013). Structural and photophysical properties of Nile red: Implications for its use in cellular imaging. Biochemistry, 52(6), 1007-1016. https://doi.org/10.1021/bi301385f
Kim, H., & Kim, Y. (2021). Advances in the synthesis and application of pH-responsive nanogels for drug delivery. Polymers, 13(22), 3896. https://doi.org/10.3390/polym13223896
Koetting, M. C., Peters, J. T., Steichen, S. D., & Peppas, N. A. (2015). Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials Science and Engineering: R: Reports, 93, 1–49. https://doi.org/10.1016/j.mser.2015.04.001
Kurniasih, T., Hasan, N., & Andayani, W. (2015). Impact of local environment on the fluorescence intensity of Nile red: Application to drug delivery systems. Journal of Fluorescence, 25(5), 1205-1214. https://doi.org/10.1007/s10895-015-1617-8
Li, Z., Yang, X., & Liu, Y. (2019). The role of pH-responsive nanocarriers in cancer therapy: A review. Nanomedicine: Nanotechnology, Biology, and Medicine, 17(1), 29-49. https://doi.org/10.1016/j.nano.2019.04.014
Lockhart, T. J., Gole, A., & Alivisatos, A. P. (2016). Nanogel synthesis and characterization using dynamic light scattering. Nanotechnology Reviews, 5(2), 143-152. https://doi.org/10.1515/ntrev-2016-0007
Neamtu, I., Rusu, A. G., Diaconu, A., Nita, L. E., Chiriac, A. P., & Popa, M. (2017). Nanogels designed for drug delivery and biomedical applications. Drug Delivery, 24(1), 539–557. https://doi.org/10.1080/10717544.2017.1291054
Raemdonck, K., Demeester, J., & De Smedt, S. C. (2009). Advanced nanogel engineering for drug delivery. Advanced Drug Delivery Reviews, 61(4), 414–426. https://doi.org/10.1016/j.addr.2009.03.008
Sam Au (2023). "Transitioning Layer-by-Layer Nanocapsule Synthesis from Batch to Continuous Production: Optimizing Calcium Phosphate Core Template Encapsulation", Biosensors and Nanotheranostics, 2(1),1-7, 9912.
Sasaki, Y., & Akiyoshi, K. (2010). Nanogel engineering for new nanobiomaterials: Chemical modification of nanogels and their biomedical applications. Chemical Record, 10(6), 366–376. https://doi.org/10.1002/tcr.201000011
Schoener, C. A., & Peppas, N. A. (2012). Molecular imprinted hydrogels in drug delivery. Advanced Drug Delivery Reviews, 64(11), 1505–1520. https://doi.org/10.1016/j.addr.2012.07.010
Soni, S., & Yadav, K. S. (2016). Nanogels as potential nanomedicine carriers for cancer therapy. Drug Delivery, 23(1), 231–246. https://doi.org/10.3109/10717544.2014.928727
Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinski, W. E. (2002). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70(1-2), 1–20. https://doi.org/10.1016/S0168-3659(00)00339-4
Vashist, A., Ahmad, S., Dev, A., Gupta, Y. K., & Maiti, P. (2014). Stimuli-responsive hydrogels for therapeutics. Advances in Drug Delivery Systems, 45(4), 1637–1656. https://doi.org/10.1016/j.addr.2013.10.007
Wu, Y., & Wang, Z. (2016). Nanogels for advanced drug delivery. Advanced Drug Delivery Reviews, 107, 2–14. https://doi.org/10.1016/j.addr.2016.05.010
Zhang, S., Shubin, Z., Chen, Y., & Li, W. (2016). Optimization of drug loading in nanogel systems: Effects of polymer concentration and drug properties. International Journal of Pharmaceutics, 514(1), 65-72. https://doi.org/10.1016/j.ijpharm.2016.09.038