References
Abbas, S., Parveen, I., Nisa, Z. U., Amjad, M., Metwally, A. S. M., Nazar, M., & Jan, A. Z. (2024). Effect of thermal radiation on fractional MHD Casson flow with the help of fractional operator. International Journal of Theoretical Physics, 63(8), 186. https://doi.org/10.1007/s10773-024-06047-2
Asma, K., Khan, I., Arshad, K., & Sharidan, S. (2015). Unsteady MHD free convection flow of Casson fluid past an oscillating vertical plate embedded in a porous medium. Engineering Science and Technology, an International Journal, 18(2), 309-317. https://doi.org/10.1016/j.jestch.2015.02.004
Bala Anasuya, J., & Srinivas, S. (2023). Heat transfer characteristics of magnetohydrodynamic two-fluid oscillatory flow in an inclined channel with saturated porous medium. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. https://doi.org/10.1177/09544089221146364
Bhattacharyya, K., Hayat, T., & Alsaedi, A. (2014). Exact solution for boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet. ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 94(6), 522-528. https://doi.org/10.1002/zamm.201300106
Cai, G., & Li, J. (2021). Existence and exponential growth of global classical solutions to the compressible Navier-Stokes equations with slip boundary conditions in 3D bounded domains. arXiv preprint arXiv:2102.06348. https://doi.org/10.48550/arXiv.2102.06348
Casson, N. (1959). A flow equation for the pigment oil suspension of the printing ink type. In Rheology of Disperse Systems (pp. 84-102). Pergamon.
Chen, X., & Yu, X. (2015). A numerical study on oscillatory flow-induced sediment motion over vortex ripples. Journal of Physical Oceanography, 45(1), 228-246. https://doi.org/10.1175/JPO-D-14-00023.1
Chen, Y., Huang, B., & Shi, X. (2021). Global well-posedness of classical solutions to the compressible Navier-Stokes-Poisson equations with slip boundary conditions in 3D bounded domains. arXiv preprint arXiv:2102.07938. https://doi.org/10.48550/arXiv.2102.07938
Dogonchi, A. S., Alizadeh, M., & Ganji, D. D. (2017). Investigation of MHD Go-water nanofluid flow and heat transfer in a porous channel in the presence of thermal radiation effect. Advanced Powder Technology, 28(7), 1815-1825. https://doi.org/10.1016/j.apt.2017.04.001
Earnshaw, H. C., & Greated, C. A. (1998). Dynamics of ripple bed vortices. Experimental Fluid Mechanics, 25(3), 265-275. https://doi.org/10.1007/s003480050122
Hakeem, A. A., & Sathiyanathan, K. (2009). An analytic solution of an oscillatory flow through a porous medium with radiation effect. Nonlinear Analysis: Hybrid Systems, 3(3), 288-295. https://doi.org/10.1016/j.na-hs.2008.09.002
Hu, T., Ren, H., Shen, J., Niu, Z., Zhang, M., Xu, Y., ... & Sun, T. (2023). Experimental investigation on hydrodynamic forces of semi-submerged cylinders in combined steady flow and oscillatory flow. Ocean Engineering, 268, 113612. https://doi.org/10.1016/j.oceaneng.2023.113612
Hussanan, A., Salleh, M. Z., Tahar, R. M., & Khan, I. (2014). Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating. PLoS ONE, 9(10), e108763. https://doi.org/10.1371/journal.pone.0108763
Ja'fari, M., & Jaworski, A. J. (2023). On the nonlinear behavior of oscillatory flow in a high-pressure amplitude standing-wave thermoacoustic heat engine. International Journal of Heat and Mass Transfer, 201, 123595. https://doi.org/10.1016/j.ijheatmasstransfer.2023.123595
Jha, B. K., & Ajibade, A. O. (2009). Free convective flow of heat generating/absorbing fluid between vertical porous plates with periodic heat input. International Communications in Heat and Mass Transfer, 36(6), 624-631. https://doi.org/10.1016/j.icheatmasstransfer.2009.01.015
Jha, B. K., & Ajibade, A. O. (2010). Free convective flow between vertical porous plates with periodic heat input. ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 90(3), 185-193. https://doi.org/10.1002/zamm.200810217
Jha, B. K., & Ajibade, A. O. (2012). Effect of viscous dissipation on natural convection flow between vertical parallel plates with time-periodic boundary conditions. Communications in Nonlinear Science and Numerical Simulation, 17(4), 1576-1587. https://doi.org/10.1016/j.cnsns.2011.07.029
Khalid, A., Khan, I., & Shafie, S. (2014). Exact solutions for unsteady free convection flow of Casson fluid over an oscillating vertical plate with constant wall temperature. Abstract and Applied Analysis, 2014, Article ID 946350. https://doi.org/10.1155/2014/946350
Makinde, O. D., & Mhone, P. Y. (2005). Heat transfer to MHD oscillatory flow in a channel filled with porous medium. Romanian Journal of Physics, 50(9/10), 931-938. https://doi.org/10.5550/RJF-50-9-10-2005-01
Malarkey, J., & Davies, A. G. (2002). Discrete vortex modeling of oscillatory flow over ripples. Applied Ocean Research, 24(3), 127-145. https://doi.org/10.1016/S0141-1187(02)00014-8
Mehmood, A., & Ali, A. (2007). The effect of slip condition on unsteady MHD oscillatory flow of a viscous fluid in a planar channel. Romanian Journal of Physics, 52(1/2), 85-94. https://doi.org/10.5550/RJF-52-1-2-2007-01
Mustafa, M., Hayat, T., Pop, I., & Hendi, A. A. (2012). Stagnation-point flow and heat transfer of a Casson fluid towards a stretching sheet. Z. Naturforsch, 67(1-2), 70-76. https://doi.org/10.5560/ZNA.2012-0007
Nadeem, S., Haq, R. U., & Lee, C. (2012). MHD flow of a Casson fluid over an exponentially shrinking sheet. Scientia Iranica, 19(6), 1550-1553. https://doi.org/10.1016/j.scient.2012.04.004
Niyas, M. M., & Shaija, A. (2023). Biodiesel production from coconut waste cooking oil using a novel solar-powered rotating flask oscillatory flow reactor and its utilization in a diesel engine. Thermal Science and Engineering Progress, 40, 101794. https://doi.org/10.1016/j.tsep.2023.101794
Ramesh, K., & Devakar, M. (2015). Some analytical solutions for flows of Casson fluid with slip boundary conditions. Ain Shams Engineering Journal, 6(4), 967-975. https://doi.org/10.1016/j.asej.2014.09.003
Shehzad, S. A., Hayat, T., Qasim, M., & Asghar, S. (2013). Effects of mass transfer on MHD flow of Casson fluid with chemical reaction and suction. Brazilian Journal of Chemical Engineering, 30(1), 187-195. https://doi.org/10.1590/S0104-66322013000100018
Si, X. H., Zheng, L. C., Zhang, X. X., & Chao, Y. (2011). Homotopy analysis solutions for the asymmetric laminar flow in a porous channel with expanding or contracting walls. Acta Mechanica Sinica, 27(2), 208-214. https://doi.org/10.1007/s10409-011-0053-7
Siddiqui, S. U., & Mishra, S. (2007). A study of modified Casson’s fluid in modeled normal and stenotic capillary-tissue diffusion phenomena. Applied Mathematics and Computation, 189(2), 1048-1057. https://doi.org/10.1016/j.amc.2007.01.061
Tang, T., & Gao, H. (2016). Strong solutions to 3D compressible magnetohydrodynamic equations with Navier-slip condition. Mathematical Methods in the Applied Sciences, 39(10), 2768-2782. https://doi.org/10.1002/mma.3666
Umavathi, J. C., Chamkha, A. J., Mateen, A., & Al-Mudhaf, A. (2009). Unsteady oscillatory flow and heat transfer in a horizontal composite porous medium channel. Nonlinear Analysis: Model and Control, 14(3), 397-415. https://doi.org/10.15388/NA.2009.14.3.26
Varatharaj, K., & Tamizharasi, R. (2024). Multiple solution of MHD Casson fluid flow in porous channel with chemical reactions and thermal radiation effects. Journal of Magnetism and Magnetic Materials, 172205. https://doi.org/10.1016/j.jmmm.2023.172205
Venkatesan, J., Sankar, D. S., Hemalatha, K., & Yatim, Y. (2013). Mathematical analysis of Casson fluid model for blood rheology in stenosed narrow arteries. Journal of Applied Mathematics, 583-809. https://doi.org/10.1155/2013/583809
Xi, S., & Hao, X. (2017). Existence of the compressible magnetohydrodynamic equations with vacuum. Journal of Mathematical Analysis and Applications, 453(1), 410-433. https://doi.org/10.1016/j.jmaa.2017.03.011
Yuan, J., & Wang, D. (2019). An experimental investigation of acceleration-skewed oscillatory flow over vortex ripples. Journal of Geophysical Research: Oceans, 124(12), 9620-9643. https://doi.org/10.1029/2019JC015309