Peptide Mitigation as a Therapeutic Strategy for Spikeopathy: Addressing Aberrant Protein Signals Induced by mRNA Vaccines
Shamsuddin Sultan Khan 1*, John A Catanzaro 1
Journal of Precision Biosciences 5(1) 1-10 https://doi.org/10.25163/biosciences.515804
Submitted: 06 February 2023 Revised: 11 April 2023 Published: 12 April 2023
Abstract
The extensive analysis of RNA transcription and protein datasets has uncovered numerous aberrant protein signals that disrupt cellular function. A primary concern is the foreign mRNA vaccine-derived spike protein, which has been linked to inflammation, autoimmune disorders, cardiovascular and neurovascular complications, and end-organ failure. This phenomenon, termed "spikeopathy," underscores the unintended and potentially irreversible consequences of mRNA-based interventions. The persistence of the foreign spike protein and its detrimental interactions with human cellular systems raise serious concerns about the long-term safety and viability of mRNA technology for viral disease management. To counteract these challenges, peptide mitigation emerges as a promising therapeutic strategy. Unlike mRNA vaccines, peptide-based therapies offer a precise and adaptable approach to neutralizing the pre-fusion spike protein, modulating immune and inflammatory responses, promoting cellular repair, and enabling personalized treatment solutions. By addressing the flawed protein programming induced by mRNA technology, peptides hold the potential to reverse adverse effects and restore normal physiological function. Peptide reprogramming, therefore, represents a vital advancement toward safer and more effective therapeutic solutions. Given the increasing concerns over mRNA vaccine safety, further research into peptide-based interventions is essential to safeguard public health and ensure sustainable treatment efficacy.
Keywords: Spikeopathy, mRNA vaccine, peptide mitigation, immune modulation, cellular repair
References
Al Musaimi, O., Al Shaer, D., de la Torre, B. G., & Albericio, F. (2018). Peptide-based antivirals: New drugs on the horizon? Journal of Medicinal Chemistry, 61(20), 9292-9307. https://doi.org/10.1021/acs.jmedchem.8b00807
Al Shaer, D., Al Musaimi, O., de la Torre, B. G., & Albericio, F. (2019). Peptide synthesis: Past, present, and future. Chemical Reviews, 119(23), 12038-12106. https://doi.org/10.1021/acs.chemrev.9b00207
Bannas, P., Hambach, J., & Koch-Nolte, F. (2017). Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics. Front Immunol, 8, 1603.https://doi.org/10.3389/fimmu.2017.01603
Bernard, I., Limonta, D., Mahal, L.K., & Hobman, T.C. (2021). Endothelium infection and dysregulation by SARS-CoV-2: Evidence and caveats in COVID-19. Viruses, 13(29). https://doi.org/10.3390/v13010029
Callaway, E. (2021). Delta coronavirus variant: Scientists brace for impact. Nature, 595(17-18). https://doi.org/10.1038/d41586-021-01696-3
Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev, 65, 1357-1369.https://doi.org/10.1016/j.addr.2012.09.039
Collins, F. S., Ginsburg, G. S., & Haga, S. B. (2014). Personalized medicine: The path forward. Nature, 506(7487), 302-303. https://doi.org/10.1038/506302a
D'Aloisio, V., Eyer, K., & Frey, O. (2021). Miniaturized and automated peptide synthesis platforms for drug discovery. Trends in Biotechnology, 39(8), 832-845. https://doi.org/10.1016/j.tibtech.2021.02.005
Derakhshankhah, H., & Jafari, S. (2018). Cell penetrating peptides: A concise review with emphasis on biomedical applications. Biomed Pharmacother, 108, 1090-1096.https://doi.org/10.1016/j.biopha.2018.09.097
Du, J., & Stenzel, M. H. (2014). Drug carriers for the delivery of therapeutic peptides. Biomacromolecules, 15(4), 1097-1114. https://doi.org/10.1021/bm500067y
Faria, N.R., Mellan, T.A., Whittaker, C., Claro, I.M., Candido, D.D.S., Mishra, S., Crispim, M.A.E., Sales, F.C.S., Hawryluk, I., & McCrone, J.T. (2021). Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science, 372(815-821). https://doi.org/10.1126/science.abh2644
Fosgerau, K., & Hoffmann, T. (2015). Peptide therapeutics: Current status and future directions. Drug Discovery Today, 20(1), 122-128. https://doi.org/10.1016/j.drudis.2014.10.003
Hamming, I., Timens, W., Bulthuis, M.L.C., Lely, A.T., Navis, G.J., & van Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: A first step in understanding SARS pathogenesis. Journal of Pathology, 203(631-637). https://doi.org/10.1002/path.1570
Hoofnagle, A. N., Whiteaker, J. R., Carr, S. A., Kuhn, E., Liu, T., et al. (2016). Recommendations for the Generation, Quantification, Storage, and Handling of Peptides Used for Mass Spectrometry-Based Assays. Clin Chem, 62, 48-69.
https://doi.org/10.1373/clinchem.2015.250563
Hopkins, A. L., & Groom, C. R. (2002). The druggable genome. Nature Reviews Drug Discovery, 1(9), 727-730. https://doi.org/10.1038/nrd892
Ioannidis, J. P. A., Cripps, S., & Tanner, M. A. (2022). Forecasting for COVID-19 has failed. International Journal of Forecasting, 38(2), 423-438. https://doi.org/10.1016/j.ijforecast.2020.08.004
Jensen, R. L., Jensen, L. T., & Andersen, K. R. (2018). Computational peptide design and its application in biotechnology. Molecular Pharmaceutics, 15(6), 2299-2311. https://doi.org/10.1021/acs.molpharmaceut.8b00164
Jeong, W., Rosania, G. R., & Shin, M. C. (2018). Peptide-based strategies for enhanced intracellular delivery of biologics. Journal of Controlled Release, 286, 172-189. https://doi.org/10.1016/j.jconrel.2018.07.012
Kaplon, H., Crescioli, S., Chenoweth, A., Visweswaraiah, J., & Reichert, J. M. (2023). Antibodies to watch in 2023. MAbs, 15, 2153410.https://doi.org/10.1080/19420862.2022.2153410
Kontermann, R. E. (2011). Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol, 22, 868-876.https://doi.org/10.1016/j.copbio.2011.06.012
Lalezari, J. P., Henry, K., O'Hearn, M., Montaner, J. S., et al. (2003). Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med, 348, 2175-2185 https://doi.org/10.1056/NEJMoa035026
Lau, J. L., & Dunn, M. K. (2018). Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic & Medicinal Chemistry, 26(10), 2700-2707.https://doi.org/10.1016/j.bmc.2017.06.052
Mann, D. A., & Frankel, A. D. (1991). Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J, 10, 1733-1739.https://doi.org/10.1002/j.1460-2075.1991.tb07697.x
Merrifield, R. B. (1963). Solid-phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society, 85(14), 2149-2154. https://doi.org/10.1021/ja00897a025
Mijalis, A. J., Thomas, D. A., Simon, M. D., Adamo, A., Beaumont, R., Jensen, K. F., & Pentelute, B. L. (2017). A fully automated flow-based approach for on-demand peptide synthesis. Nature Chemical Biology, 13(5), 464-466.
https://doi.org/10.1038/nchembio.2318
Muttenthaler, M., King, G. F., Adams, D. J., & Alewood, P. F. (2021). Trends in peptide drug discovery. Nature Reviews Drug Discovery, 20(4), 309-325. https://doi.org/10.1038/s41573-020-00135-8
Pang, X.C., Zhang, H.X., Zhang, Z., Rinkiko, S., Cui, Y.M., & Zhu, Y.Z. (2020). The two-way switch role of ACE2 in the treatment of novel coronavirus pneumonia and underlying comorbidities. Molecules, 26(142). https://doi.org/10.3390/molecules26010142
Polack, F. P., et al. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine, 383(27), 2603-2615. https://doi.org/10.1056/NEJMoa2034577
Reyna-Villasmil, E., et al. (2022). Association of patients' epidemiological characteristics and comorbidities with severity and related mortality risk of SARS-CoV-2 infection. Biomedicines, 10(10), 2437. https://doi.org/10.3390/biomedicines10102437
Rid, A., Lipsitch, M., & Miller, F. G. (2021). The ethics of continuing placebo in SARS-CoV-2 vaccine trials. JAMA, 325(3), 219-220. https://doi.org/10.1001/jama.2020.25053
Roussel, Y., et al. (2020). SARS-CoV-2: Fear versus data. International Journal of Antimicrobial Agents, 55(5), 105947. https://doi.org/10.1016/j.ijantimicag.2020.105947
Sletten, E. M., Bertozzi, C. R., & Rabuka, D. (2019). Peptide-based vaccine development: Current strategies and future directions. Chemical Society Reviews, 48(11), 2991-3004. https://doi.org/10.1039/c8cs00728a
Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E.J., & Msomi, N. (2021). Detection of a SARS-CoV-2 variant of concern in South Africa. Nature, 592(438-443). https://doi.org/10.1038/s41586-021-03402-9
To, K.F., & Lo, A.W.I. (2004). Exploring the pathogenesis of severe acute respiratory syndrome (SARS): The tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). Journal of Pathology, 203(740-743). https://doi.org/10.1002/path.1597
Tsoras, A. N., & Champion, J. A. (2019). Protein and peptide biomaterials for vaccine design. ACS Biomaterials Science & Engineering, 5(9), 4516-4533. https://doi.org/10.1021/acsbiomaterials.9b00398
Twomey, J. D., & Zhang, B. (2021). Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Companion Diagnostics. AAPS J, 23, 39.https://doi.org/10.1208/s12248-021-00574-0
Vaughan, A. (2021). Omicron emerges. New Scientist, 252(7). https://doi.org/10.1016/S0262-4079(21)02140-0
Verkerk, R., et al. (2022). Self-selected COVID-19 "unvaccinated" cohort reports favorable health outcomes. International Journal of Vaccine Theory, Practice, and Research, 2(2), 321-354. https://doi.org/10.56098/ijvtpr.v2i2.43
Vilas Boas, L. C. P., Campos, M. L., Berlanda, R. L. A., de Carvalho Neves, N., & Franco, O. L. (2019). Antiviral peptides as promising therapeutic drugs. Cellular and Molecular Life Sciences, 76, 3525-3542. https://doi.org/10.1007/s00018-019-03138-w
Vojdani, A., Vojdani, E., & Kharrazian, D. (2021). Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: Implications for autoimmune diseases. Frontiers in Immunology, 11, 617089. https://doi.org/10.3389/fimmu.2020.617089
Volz, E., Mishra, S., Chand, M., Barrett, J.C., Johnson, R., Geidelberg, L., Hinsley, W.R., Laydon, D.J., Dabrera, G., & O'Toole, Á. (2021). Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature, 593(266-269). https://doi.org/10.1038/s41586-021-03470-x
Wang, M.Y., Zhao, R., Gao, L.J., Gao, X.F., Wang, D.P., & Cao, J.M. (2020). SARS-CoV-2: Structure, biology, and structure-based therapeutics development. Frontiers in Cellular and Infection Microbiology, 10(724). https://doi.org/10.3389/fcimb.2020.587269
Watson, O. J., et al. (2022). Global impact of the first year of COVID-19 vaccination: A mathematical modeling study. Lancet Infectious Diseases, 22(9), 1293-1302. https://doi.org/10.1016/S1473-3099(22)00320-6
WHO Ad Hoc Expert Group (2021). Placebo-controlled trials of COVID-19 vaccines-Why we still need them. New England Journal of Medicine, 384, e2. https://doi.org/10.1056/NEJMp2033538
Zhang, Q. Y., Yan, Z. B., Meng, Y. M., Hong, X. Y., et al. (2021). Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res, 8, 48.https://doi.org/10.1186/s40779-021-00343-2
View Dimensions
View Altmetric
Save
Citation
View
Share