Artificial Intelligence and Applied Machine Learning to Improve Pre-Analytical and Post-Analytical Processes in Laboratory Medicine
Md. Moyen Uddin PK1*, Tufael2
Journal of Ai ML DL 1 (1) 1-10 https://doi.org/10.25163/ai.1110407
Submitted: 27 July 2025 Revised: 29 September 2025 Accepted: 03 October 2025 Published: 05 October 2025
Abstract
Artificial intelligence (AI) and machine learning (ML) are transforming laboratory medicine by enhancing accuracy, efficiency, and reliability across pre-analytical and post-analytical phases. The pre-analytical stage, which involves patient preparation, sample collection, labeling, transport, and processing, is particularly vulnerable to human error. Studies indicate that nearly 30% of laboratory errors occur at this stage, often due to mislabeling, mishandling, or improper preparation. AI-driven systems, including robotic phlebotomy devices, smart barcoding, and predictive analytics, significantly reduce these risks by automating repetitive tasks, monitoring sample integrity in real time, and anticipating workflow bottlenecks. Similarly, ML algorithms integrated into Laboratory Information Systems (LIS) enhance interoperability with Electronic Health Records (EHR), enabling seamless data tracking and reducing delays. In the post-analytical phase, AI and ML play a crucial role in validating results, detecting anomalies, and supporting clinical decision-making. Deep learning models applied to pathology images improve diagnostic accuracy, while natural language processing (NLP) tools standardize laboratory reports, making them clearer and more consistent. Predictive models further allow prioritization of urgent results and facilitate personalized treatment planning by integrating laboratory data with imaging and clinical histories. These innovations not only reduce turnaround time but also improve patient outcomes by enabling earlier diagnosis and tailored therapeutic interventions. Despite these advancements, challenges such as algorithmic bias, data privacy, system interoperability, and the interpretability of AI models remain.
Keywords: Artificial Intelligence, Machine Learning, Laboratory Medicine, Diagnostics, Precision Healthcare
References
Ain, Q. U., Nazir, R., Nawaz, A., Shahbaz, H., Dilshad, A., Mufti, I. U., & Iftikhar, M. (2024). Machine learning approach towards quality assurance, challenges and possible strategies in laboratory medicine. J Clin Transl Pathol, 4(2), 76-87.
https://doi.org/10.14218/JCTP.2023.00061
Akter, L., Mondal, R. S., & Bhuiyan, M. N. A. (2025). Artificial Intelligence Application in Public Health: Advancement and Associated Challenges. Journal of Primeasia, 6(1), 1-10. https://doi.org/10.25163/primeasia.6110325
Alahmri, M. N. S., Alshehri, A. M. A., Gazwani, H. A. Y., & Alsemari, S. A. S. (2024). The role of automation in modern clinical laboratories. Tec Empresarial, 6(2), 762-773.
Alsaedi, A. S. A., Alharbi, N. A. H., Alamri, T. D., Alawamer, A. M., Al Jabri, A. T., Homeda, A., & Alsharef, A. F. (2024). The role of predictive analytics in theoretical modeling of clinical laboratory workflow optimization. Journal of International Crisis and Risk Communication Research, 7(S6), 1864. https://search.proquest.com/openview/c0e88a83331a13e4517aac2421716407/1?pq-origsite=gscholar&cbl=6480378
Alsharari, I. S. A., Alsharari, A. M. D. A., & Alsharari, F. S. H. A. (2024). Quality control of laboratory medicine: Preventing errors for diagnostic reliability. Saudi Journal of Medicine and Public Health, 1(1), 114-123. https://www.saudijmph.com/index.php/pub/article/view/52
Amin, M. S., Rahman, A., & Rashid, M. J. (2025). AI in precision oncology: Revolutionizing early diagnosis, imaging, and targeted therapies. Paradise, 1(1). https://doi.org/10.25163/paradise.1110340
Amin, M. S., & Rahman, A. (2025). Integrative approaches of AI in personalised disease management: From diagnosis to drug delivery. Paradise, 1(1). https://doi.org/10.25163/paradise.1110339
Bhuiyan, M. N. A., Mondal, R. S., & Akter, L. (2025). Advancing cancer imaging with artificial intelligence: Clinical application and challenges. Primeasia, 6(1), 1-11. https://doi.org/10.25163/primeasia.6110322
Cabitza, F., & Banfi, G. (2018). Machine learning in laboratory medicine: Waiting for the flood? Clinical Chemistry and Laboratory Medicine, 56(4), 516–524.
https://doi.org/10.1515/cclm-2017-0565
Çubukçu, H. C., Topcu, D. I., & Yenice, S. (2024). Machine learning-based clinical decision support using laboratory data. Clinical Chemistry and Laboratory Medicine (CCLM), 62(5), 793-823. https://www.degruyterbrill.com/document/doi/10.1515/cclm-2023-1037/html
Hou, H., Zhang, R., & Li, J. (2024). Artificial intelligence in the clinical laboratory. Clinica Chimica Acta, 559, 119724. https://www.sciencedirect.com/science/article/pii/S0009898124019752
John, G. K., Favaloro, E. J., Austin, S., Islam, M. Z., & Santhakumar, A. B. (2025). From errors to excellence: the pre-analytical journey to improved quality in diagnostics. A scoping review. Clinical Chemistry and Laboratory Medicine (CCLM), 63(7), 1243-1259. https://www.degruyterbrill.com/document/doi/10.1515/cclm-2024-1277/html
Khokhar, M., Yadav, D., & Sharma, P. (2025). Transforming healthcare in the age of artificial intelligence: A new era of diagnostic excellence in laboratory medicine. Indian Journal of Clinical Biochemistry, 1-2. https://link.springer.com/article/10.1007/s12291-025-01315-2
Lin, Y., Spies, N. C., Zohner, K., McCoy, D., Zaydman, M. A., & Farnsworth, C. W. (2025). Pre-analytical phase errors constitute the vast majority of errors in clinical laboratory testing. Clinical Chemistry and Laboratory Medicine (CCLM). https://www.degruyterbrill.com/document/doi/10.1515/cclm-2025-0190/html
Lippi, G., Jackson, B., & Plebani, M. (2025). Improving diagnosis in health care: Laboratory medicine. Diagnosis. https://www.degruyterbrill.com/document/doi/10.1515/dx-2025-0052/html
Lippi, G., Mattiuzzi, C., & Favaloro, E. J. (2024). Artificial intelligence in the pre-analytical phase: State-of-the-art and future perspectives. Journal of Medical Biochemistry, 43(1), 1. https://pmc.ncbi.nlm.nih.gov/articles/PMC10943465/
Mondal, R. S., Akter, L., & Bhuiyan, M. N. A. (2024). Artificial Intelligence in Drug Development and Delivery: Opportunities, Challenges, and Future Directions. Journal of Angiotherapy, 8(1), 1-10. https://doi.org/10.25163/angiotherapy.8810326
Mondal, R. S., Bhuiyan, M. N. A., & Akter, L. (2025). AI-driven innovations in cancer research and personalized healthcare. Journal of Angiotherapy, 9(1), 1-10. https://doi.org/10.25163/angiotherapy.9110321
Mondal, R. S., Bhuiyan, M. N. A., & Akter, L. (2024). Machine learning for chronic disease predictive analysis for early intervention and personalized care. Applied IT & Engineering, 2(1), 1-11. https://doi.org/10.25163/engineering.2110301
Mondal, R. S., Akter, L., & Bhuiyan, M. N. A. (2025). Integrating AI and ML techniques in modern microbiology. Applied IT & Engineering, 3(1), 1-10. https://doi.net/10.25163/engineering.3110323
Olayanju, O. A., Awah, N. E., Mba, I. N., Okebalama, V., Hilary, O., & Odok, G. (2024). Artificial intelligence in laboratory medicine. Annals of Tropical Pathology, 15(2), 32-46. https://www.ajol.info/index.php/atp/article/view/288706
Pennestrì, F., & Banfi, G. (2022). Artificial intelligence in laboratory medicine: Fundamental ethical issues and normative key-points. Clinical Chemistry and Laboratory Medicine, 60(12), 1867–1874. https://doi.org/10.1515/cclm-2021-1353
Plebani, M. (2024). Harmonizing the post-analytical phase: Focus on the laboratory report. Clinical Chemistry and Laboratory Medicine (CCLM), 62(6), 1053-1062. https://www.degruyterbrill.com/document/doi/10.1515/cclm-2023-1402/html
Plebani, M., Cadamuro, J., Vermeersch, P., Jovicic, S., Ozben, T., Trenti, T., & Lippi, G. (2024). A vision for the future: Value-based laboratory medicine. Clinical Chemistry and Laboratory Medicine (CCLM), 62(12), 2373-2387. https://www.degruyterbrill.com/document/doi/10.1515/cclm-2024-1022/html
Siddique, M. A. B., Debnath, A., Nath, N. D., Biswash, M. A. R., & Tufael. (2018). Advancing medical science through nanobiotechnology: Prospects, applications, and future directions. Journal of Primeasia, 1(1), 1–7. https://doi.org/10.25163/primeasia.1110163
Tufael, & Rahman Sunny, A. (2022). Transforming healthcare with artificial intelligence: Innovations, applications, and future challenges. Journal of Primeasia, 3(1), 1–6. https://doi.org/10.25163/primeasia.319802
Tufael, Rahman Sunny, A., et al. (2023). Artificial intelligence in addressing cost, efficiency, and access challenges in healthcare. Journal of Primeasia, 4(1), 1–5. https://doi.org/10.25163/primeasia.419798
Vasilev, Y. A., Nanova, O. G., Vladzymyrskyy, A. V., Goldberg, A. S., Blokhin, I. A., & Reshetnikov, R. V. (2025). Systematic review of artificial intelligence solutions in laboratory medicine: Efficiency, application scenarios, and practical experience. Digital Diagnostics. https://jdigitaldiagnostics.com/DD/article/view/635349
Van Dis, E. A. M., Bollen, J., Zuidema, W., van Rooij, R., & Bockting, C. L. (2023). ChatGPT: Five priorities for research. Nature, 614(7947), 224–226. https://doi.org/10.1038/d41586-023-00288-7