Integrative Disciplinary Research | Online ISSN 3064-9870 | Print ISSN 3069-4353
RESEARCH ARTICLE   (Open Access)

In Silico Drug-Likeness and Safety Profiling of Tinosporaside: A Natural Alternative to Celecoxib for COX-2 Inhibition

Md. Robiul Islam1*, Amena Khatun Manica2, Most Farhana Akter1, Md Abu Bakar Siddique3, Tufael4

+ Author Affiliations

Journal of Primeasia 4 (1) 1-8 https://doi.org/10.25163/primeasia.4110434

Submitted: 07 December 2022 Revised: 24 January 2023  Accepted: 27 January 2023  Published: 30 January 2023 


Abstract

Background: Cyclooxygenase-2 (COX-2) is a key enzyme involved in the inflammatory response through the biosynthesis of prostaglandins from arachidonic acid. Although Celecoxib is a widely used COX-2 inhibitor, its long-term use has been associated with adverse effects including cardiovascular risk, hormonal imbalance, and general toxicity. Therefore, identifying a safer, naturally derived alternative is of growing importance in anti-inflammatory drug development.

Aim: This study aimed to investigate the potential of Tinosporaside, a glycosylated natural compound isolated from Tinospora cordifolia, as a safer and effective alternative to Celecoxib by evaluating its binding efficiency, toxicity, and pharmacokinetic behavior using in silico methods.

Methods: The crystal structure of COX-2 (PDB ID: 3LN1) was used for molecular docking with Celecoxib and Tinosporaside using AutoDock Vina within the PyRx platform. Ligands were geometrically optimized using Open Babel. Binding interactions were visualized with BIOVIA Discovery Studio. Pharmacokinetic and drug-likeness properties were assessed via SwissADME, while toxicity profiles were predicted using ProTox-II. A 100-nanosecond Molecular Dynamics (MD) simulation using GROMACS was performed to assess the structural stability and flexibility of ligand-protein complexes.

Results: Both ligands demonstrated strong binding affinity to the COX-2 active site. However, Tinosporaside exhibited a significantly lower predicted toxicity profile, high water solubility, and sustained interaction stability in MD simulations. Although it showed lower gastrointestinal absorption, its overall safety and binding behavior suggest therapeutic promise.

Conclusion: Tinosporaside shows promise as a safe, natural COX-2 inhibitor and may serve as an effective alternative to Celecoxib for long-term inflammation management.

Keywords: COX-2 inhibition, Tinosporaside, Celecoxib, Molecular docking, ADME profiling.

References

Alsayed, S. S. R., Elshemy, H. A. H., Abdelgawad, M. A., Abdel-Latif, M. S., & Abdellatif, K. R. A. (2017). Design, synthesis and biological screening of some novel celecoxib and etoricoxib analogs with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorganic Chemistry, 70, 173–183. https://doi.org/10.1016/j.bioorg.2016.12.008

Anwar, N., Teo, Y. K., & Tan, J. B. L. (2019). The Role of Plant Metabolites in Drug Discovery: Current Challenges and Future Perspectives. In Natural Bio-active Compounds (pp. 25–51). Springer Singapore. https://doi.org/10.1007/978-981-13-7205-6_2

Bala, M., Pratap, K., Verma, P. K., Singh, B., & Padwad, Y. (2015). Validation of ethnomedicinal potential of Tinospora cordifolia for anticancer and immunomodulatory activities and quantification of bioactive molecules by HPTLC. Journal of Ethnopharmacology, 175, 131–137. https://doi.org/10.1016/j.jep.2015.08.001

Cava, C., & Castiglioni, I. (2020). Integration of Molecular Docking and In Vitro Studies: A Powerful Approach for Drug Discovery in Breast Cancer. Applied Sciences, 10(19), 6981. https://doi.org/10.3390/app10196981

Chai, J., Jiang, P., Wang, P., Jiang, Y., Li, D., Bao, W., Liu, B., Liu, B., Zhao, L., Norde, W., Yuan, Q., Ren, F., & Li, Y. (2018). The intelligent delivery systems for bioactive compounds in foods: Physicochemical and physiological conditions, absorption mechanisms, obstacles and responsive strategies. Trends in Food Science & Technology, 78, 144–154. https://doi.org/10.1016/j.tifs.2018.06.003

Chatterjee, S. (2016). Oxidative Stress, Inflammation, and Disease. In Oxidative Stress and Biomaterials (pp. 35–58). Elsevier. https://doi.org/10.1016/B978-0-12-803269-5.00002-4

Chi, S., She, G., Han, D., Wang, W., Liu, Z., & Liu, B. (2016). Genus Tinospora?: Ethnopharmacology, Phytochemistry, and Pharmacology. Evidence-Based Complementary and Alternative Medicine, 2016(1). https://doi.org/10.1155/2016/9232593

Coss, C. C., Jones, A., & Dalton, J. T. (2016). Pharmacokinetic drug interactions of the selective androgen receptor modulator GTx-024(Enobosarm) with itraconazole, rifampin, probenecid, celecoxib and rosuvastatin. Investigational New Drugs, 34(4), 458–467. https://doi.org/10.1007/s10637-016-0353-8

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717

Dhama, K., Sachan, S., Khandia, R., Munjal, A., Iqbal, H. M. N., Latheef, S. K., Karthik, K., Samad, H. A., Tiwari, R., & Dadar, M. (2017). Medicinal and Beneficial Health Applications of Tinospora cordifolia (Guduchi): A Miraculous Herb Countering Various Diseases/Disorders and its Immunomodulatory Effects. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 10(2), 96–111. https://doi.org/10.2174/1872214811666170301105101

Dima, C., Assadpour, E., Dima, S., & Jafari, S. M. (2020). Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Comprehensive Reviews in Food Science and Food Safety, 19(3), 954–994. https://doi.org/10.1111/1541-4337.12547

Durdagi, S., Tahir ul Qamar, M., Salmas, R. E., Tariq, Q., Anwar, F., & Ashfaq, U. A. (2018). Investigating the molecular mechanism of staphylococcal DNA gyrase inhibitors: A combined ligand-based and structure-based resources pipeline. Journal of Molecular Graphics and Modelling, 85, 122–129. https://doi.org/10.1016/j.jmgm.2018.07.010

Fang, J., Wu, Z., Cai, C., Wang, Q., Tang, Y., & Cheng, F. (2017). Quantitative and Systems Pharmacology. 1. In Silico Prediction of Drug–Target Interactions of Natural Products Enables New Targeted Cancer Therapy. Journal of Chemical Information and Modeling, 57(11), 2657–2671. https://doi.org/10.1021/acs.jcim.7b00216

Ghatpande, N. S., Misar, A. V., Waghole, R. J., Jadhav, S. H., & Kulkarni, P. P. (2019). Tinospora cordifolia protects against inflammation associated anemia by modulating inflammatory cytokines and hepcidin expression in male Wistar rats. Scientific Reports, 9(1), 10969. https://doi.org/10.1038/s41598-019-47458-0

Hassanein, H. H., Georgey, H. H., Fouad, M. A., El Kerdawy, A. M., & Said, M. F. (2017). Synthesis and Molecular Docking of New Imidazoquinazolinones as Analgesic Agents and Selective Cox-2 Inhibitors. Future Medicinal Chemistry, 9(6), 553–578. https://doi.org/10.4155/fmc-2016-0240

Hsu, E., Murphy, S., Chang, D., & Cohen, S. P. (2015). Expert opinion on emerging drugs: chronic low back pain. Expert Opinion on Emerging Drugs, 20(1), 103–127. https://doi.org/10.1517/14728214.2015.993379

Jacob, J., Babu, B. M., Mohan, M. C., Abhimannue, A. P., & Kumar, B. P. (2018). Inhibition of proinflammatory pathways by bioactive fraction of Tinospora cordifolia. Inflammopharmacology, 26(2), 531–538. https://doi.org/10.1007/s10787-017-0319-2

James, M. T., Bhatt, M., Pannu, N., & Tonelli, M. (2020). Long-term outcomes of acute kidney injury and strategies for improved care. Nature Reviews Nephrology, 16(4), 193–205. https://doi.org/10.1038/s41581-019-0247-z

Khan, S., Andrews, K. L., & Chin-Dusting, J. P. F. (2019). Cyclo-Oxygenase (COX) Inhibitors and Cardiovascular Risk: Are Non-Steroidal Anti-Inflammatory Drugs Really Anti-Inflammatory? International Journal of Molecular Sciences, 20(17), 4262. https://doi.org/10.3390/ijms20174262

Kumar, P., Kamle, M., Mahato, D. K., Bora, H., Sharma, B., Rasane, P., & Bajpai, V. K. (2020). Tinospora cordifolia (Giloy): Phytochemistry, Ethnopharmacology, Clinical Application and Conservation Strategies. Current Pharmaceutical Biotechnology, 21(12), 1165–1175. https://doi.org/10.2174/1389201021666200430114547

Madhava, G., Ramana, K. V., Sudhana, S. M., Rao, D. S., Kumar, K. H., Lokanatha, V., Rani, A. U., & Raju, C. N. (2017). Aryl/heteroaryl Substituted Celecoxib Derivatives as COX-2 Inhibitors: Synthesis, Anti-inflammatory Activity and Molecular Docking Studies. Medicinal Chemistry, 13(5). https://doi.org/10.2174/1573406413666170221093740

Nagendrababu, V., Pulikkotil, S. J., Jinatongthai, P., Veettil, S. K., Teerawattanapong, N., & Gutmann, J. L. (2019). Efficacy and Safety of Oral Premedication on Pain after Nonsurgical Root Canal Treatment: A Systematic Review and Network Meta-analysis of Randomized Controlled Trials. Journal of Endodontics, 45(4), 364–371. https://doi.org/10.1016/j.joen.2018.10.016

Pannunzio, A., & Coluccia, M. (2018). Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals, 11(4), 101. https://doi.org/10.3390/ph11040101

Patrono, C. (2016). Cardiovascular effects of cyclooxygenase-2 inhibitors: a mechanistic and clinical perspective. British Journal of Clinical Pharmacology, 82(4), 957–964. https://doi.org/10.1111/bcp.13048

Pellegrini, C., Fornai, M., Antonioli, L., Blandizzi, C., & Calderone, V. (2019). Phytochemicals as Novel Therapeutic Strategies for NLRP3 Inflammasome-Related Neurological, Metabolic, and Inflammatory Diseases. International Journal of Molecular Sciences, 20(12), 2876. https://doi.org/10.3390/ijms20122876

Priya, L. B., Baskaran, R., Elangovan, P., Dhivya, V., Huang, C.-Y., & Padma, V. V. (2017). Tinospora cordifolia extract attenuates cadmium-induced biochemical and histological alterations in the heart of male Wistar rats. Biomedicine & Pharmacotherapy, 87, 280–287. https://doi.org/10.1016/j.biopha.2016.12.098

Ptaschinski, C., & Lukacs, N. W. (2018). Acute and Chronic Inflammation Induces Disease Pathogenesis. In Molecular Pathology (pp. 25–43). Elsevier. https://doi.org/10.1016/B978-0-12-802761-5.00002-X

Ribeiro, D., Freitas, M., Tomé, S. M., Silva, A. M. S., Laufer, S., Lima, J. L. F. C., & Fernandes, E. (2015). Flavonoids Inhibit COX-1 and COX-2 Enzymes and Cytokine/Chemokine Production in Human Whole Blood. Inflammation, 38(2), 858–870. https://doi.org/10.1007/s10753-014-9995-x

Rojas, A., Chen, D., Ganesh, T., Varvel, N. H., & Dingledine, R. (2019). The COX-2/prostanoid signaling cascades in seizure disorders. Expert Opinion on Therapeutic Targets, 23(1), 1–13. https://doi.org/10.1080/14728222.2019.1554056

Rouzer, C. A., & Marnett, L. J. (2020). Structural and Chemical Biology of the Interaction of Cyclooxygenase with Substrates and Non-Steroidal Anti-Inflammatory Drugs. Chemical Reviews, 120(15), 7592–7641. https://doi.org/10.1021/acs.chemrev.0c00215

Rumzhum, N. N., & Ammit, A. J. (2016). Cyclooxygenase 2: its regulation, role and impact in airway inflammation. Clinical & Experimental Allergy, 46(3), 397–410. https://doi.org/10.1111/cea.12697

Saxena, P., Sharma, P. K., & Purohit, P. (2020). A journey of celecoxib from pain to cancer. Prostaglandins & Other Lipid Mediators, 147, 106379. https://doi.org/10.1016/j.prostaglandins.2019.106379

Scarpignato, C., Lanas, A., Blandizzi, C., Lems, W. F., Hermann, M., & Hunt, R. H. (2015). Safe prescribing of non-steroidal anti-inflammatory drugs in patients with osteoarthritis – an expert consensus addressing benefits as well as gastrointestinal and cardiovascular risks. BMC Medicine, 13(1), 55. https://doi.org/10.1186/s12916-015-0285-8

Sharma, B., Yadav, A., & Dabur, R. (2019). Interactions of a medicinal climber Tinospora cordifolia with supportive interspecific plants trigger the modulation in its secondary metabolic profiles. Scientific Reports, 9(1), 14327. https://doi.org/10.1038/s41598-019-50801-0

Thomford, N. E., Senthebane, D. A., Rowe, A., Munro, D., Seele, P., Maroyi, A., & Dzobo, K. (2018). Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. International Journal of Molecular Sciences, 19(6), 1578. https://doi.org/10.3390/ijms19061578

Tian, S., Wang, J., Li, Y., Li, D., Xu, L., & Hou, T. (2015). The application of in silico drug-likeness predictions in pharmaceutical research. Advanced Drug Delivery Reviews, 86, 2–10. https://doi.org/10.1016/j.addr.2015.01.009

Tomic, M., Micov, A., Pecikoza, U., & Stepanovic-Petrovic, R. (2017). Clinical Uses of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) and Potential Benefits of NSAIDs Modified-Release Preparations. In Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs (pp. 1–29). Elsevier. https://doi.org/10.1016/B978-0-12-804017-1.00001-7

Vijayakumar, B., Kannappan, V., & Sathyanarayanamoorthi, V. (2016). DFT analysis and spectral characteristics of Celecoxib a potent COX-2 inhibitor. Journal of Molecular Structure, 1121, 16–25. https://doi.org/10.1016/j.molstruc.2016.04.070

Wagner, A. M., Gran, M. P., & Peppas, N. A. (2018). Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharmaceutica Sinica B, 8(2), 147–164. https://doi.org/10.1016/j.apsb.2018.01.013

Wang, B., Xie, N., & Li, B. (2019). Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review. Journal of Food Biochemistry, 43(1), e12571. https://doi.org/10.1111/jfbc.12571

Wong, S. H., & Chan, F. K. L. (2016). Adverse Effects of NSAIDs in the Gastrointestinal Tract: Risk Factors of Gastrointestinal Toxicity with NSAIDs. In NSAIDs and Aspirin (pp. 45–59). Springer International Publishing. https://doi.org/10.1007/978-3-319-33889-7_4

Xu, L.-L., Guo, F.-X., Chi, S.-S., Wang, Z.-J., Jiang, Y.-Y., Liu, B., & Zhang, J.-Y. (2017). Rapid Screening and Identification of Diterpenoids in Tinospora sinensis Based on High-Performance Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Mass Spectrometry. Molecules, 22(6), 912. https://doi.org/10.3390/molecules22060912

Yang, W., Gadgil, P., Krishnamurthy, V. R., Landis, M., Mallick, P., Patel, D., Patel, P. J., Reid, D. L., & Sanchez-Felix, M. (2020). The Evolving Druggability and Developability Space: Chemically Modified New Modalities and Emerging Small Molecules. The AAPS Journal, 22(2), 21. https://doi.org/10.1208/s12248-019-0402-2


View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
14
View
0
Share