Encoded Resistance: Structural Disruption and Signaling Crosstalk Undermine Sorafenib Binding in Mutant VEGFR2-Driven HCC
Tufael1*, Most Farhana Akter2, Md. Robiul Islam2, Md Abu Bakar Siddique3, Nashitha Hassan1, Abdullah Al Numan4, Asika Ayrin Naher4, Md Mahedi Hasan Shabuj4, Amena Khatun Manica5, Bulbul Shaikat6, Tahsin Bin Rabbani6
Paradise 1(1) 1-8 https://doi.org/10.25163/paradise.1110427
Submitted: 16 February 2025 Revised: 02 April 2025 Published: 14 April 2025
VEGFR2 mutations weaken sorafenib binding and start backup pathways, explaining resistance and supporting combined, multi-target treatments for liver cancer.
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most aggressive liver cancers, where anti-angiogenic therapies targeting VEGFR2-such as Sorafenib-are widely used. However, the emergence of drug resistance significantly limits long-term treatment success. Despite its clinical relevance, the molecular mechanisms behind this resistance remain inadequately understood. Structural alterations in VEGFR2 and activation of compensatory signaling pathways are suspected contributors.
Aim: This study aimed to evaluate how specific mutations in VEGFR2 affect Sorafenib binding affinity and to elucidate the molecular interactions and signaling disruptions that may underlie drug resistance in HCC.
Methods: The 3D structure of VEGFR2 (PDB ID: 3WZE) and the Sorafenib ligand (CID: 216239) were retrieved and prepared using BIOVIA Discovery Studio. Site-specific mutations (ASP1046→ALA, CYS919→ALA, GLU917→GLN) were introduced into the protein. Molecular docking was conducted using AutoDock Vina in PyRx, followed by interaction analysis using Discovery Studio Visualizer. Additionally, protein-protein interaction (PPI) analysis was performed using the STRING database, and KEGG pathway mapping was employed to explore signaling mechanisms associated with resistance.
Results: Docking results revealed reduced binding affinity between Sorafenib and the mutant VEGFR2 protein, accompanied by disruption of key hydrogen bonding and hydrophobic interactions. PPI and KEGG analyses identified upregulation of angiogenesis-related and alternative signaling pathways, suggesting possible bypass mechanisms that sustain tumor cell survival despite targeted therapy.
Conclusion: Mutations in VEGFR2 may compromise Sorafenib efficacy by altering its binding site and activating alternative molecular pathways. Understanding these resistance mechanisms may support the development of multi-targeted therapeutic strategies for more effective HCC treatment.
Keywords: Hepatocellular carcinoma (HCC), VEGFR2, Sorafenib, Molecular docking, Protein mutation.
References
Balacescu, O., Sur, D., Cainap, C., Visan, S., Cruceriu, D., Manzat-Saplacan, R., Muresan, M.-S., Balacescu, L., Lisencu, C., & Irimie, A. (2018). The Impact of miRNA in Colorectal Cancer Progression and Its Liver Metastases. International Journal of Molecular Sciences, 19(12), 3711. https://doi.org/10.3390/ijms19123711
Bou Antoun, N., & Chioni, A.-M. (2023). Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. International Journal of Molecular Sciences, 24(15), 12222. https://doi.org/10.3390/ijms241512222
Cabral, L. K. D., Tiribelli, C., & Sukowati, C. H. C. (2020). Sorafenib Resistance in Hepatocellular Carcinoma: The Relevance of Genetic Heterogeneity. Cancers, 12(6), 1576. https://doi.org/10.3390/cancers12061576
Dejana, E., Hirschi, K. K., & Simons, M. (2017). The molecular basis of endothelial cell plasticity. Nature Communications, 8(1), 14361. https://doi.org/10.1038/ncomms14361
Doheny, D., Manore, S. G., Wong, G. L., & Lo, H.-W. (2020). Hedgehog Signaling and Truncated GLI1 in Cancer. Cells, 9(9), 2114. https://doi.org/10.3390/cells9092114
Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L., & Liu, S.-Q. (2016). Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144
Fornari, F., Giovannini, C., Piscaglia, F., & Gramantieri, L. (2021). Elucidating the Molecular Basis of Sorafenib Resistance in HCC: Current Findings and Future Directions. Journal of Hepatocellular Carcinoma, Volume 8, 741–757. https://doi.org/10.2147/JHC.S285726
Fröhlich, E., & Salar-Behzadi, S. (2014). Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies. International Journal of Molecular Sciences, 15(3), 4795–4822. https://doi.org/10.3390/ijms15034795
Gacche, R. N., & Assaraf, Y. G. (2018). Redundant angiogenic signaling and tumor drug resistance. Drug Resistance Updates, 36, 47–76. https://doi.org/10.1016/j.drup.2018.01.002
Garg, P., Malhotra, J., Kulkarni, P., Horne, D., Salgia, R., & Singhal, S. S. (2024). Emerging Therapeutic Strategies to Overcome Drug Resistance in Cancer Cells. Cancers, 16(13), 2478. https://doi.org/10.3390/cancers16132478
Islam, T. M. T., Mahat, N. C., Shaker, I. A., Rahman, S. A., Kabir, Md. H., Shohel, M. A., Kamruzzaman, Md., & Tang, A. K. (2024). Investigation of the Relationship Between Brown HT Dye Exposure and Mammary Tumor Development in Female Rats: An Assessment of the Potential Risk of Breast Cancer. Cureus. https://doi.org/10.7759/cureus.73351
Itatani, Y., Kawada, K., Yamamoto, T., & Sakai, Y. (2018). Resistance to Anti-Angiogenic Therapy in Cancer—Alterations to Anti-VEGF Pathway. International Journal of Molecular Sciences, 19(4), 1232. https://doi.org/10.3390/ijms19041232
Kawiak, A., & Kostecka, A. (2022). Regulation of Bcl-2 Family Proteins in Estrogen Receptor-Positive Breast Cancer and Their Implications in Endocrine Therapy. Cancers, 14(2), 279. https://doi.org/10.3390/cancers14020279
Ladd, A. D., Duarte, S., Sahin, I., & Zarrinpar, A. (2024). Mechanisms of drug resistance in HCC. Hepatology, 79(4), 926–940. https://doi.org/10.1097/HEP.0000000000000237
MA Bakar. (2018). Advancing Medical Science through Nanobiotechnology: Prospects, Applications, and Future Directions. Journal of Primeasia, 1(1), 1–10. https://doi.org/10.25163/primeasia.1110163
Marin, J. J. G., Macias, R. I. R., Monte, M. J., Romero, M. R., Asensio, M., Sanchez-Martin, A., Cives-Losada, C., Temprano, A. G., Espinosa-Escudero, R., Reviejo, M., Bohorquez, L. H., & Briz, O. (2020). Molecular Bases of Drug Resistance in Hepatocellular Carcinoma. Cancers, 12(6), 1663. https://doi.org/10.3390/cancers12061663
Mary, Y. S., Mary, Y. S., Rad, A. S., Yadav, R., Celik, I., & Sarala, S. (2021). Theoretical investigation on the reactive and interaction properties of sorafenib – DFT, AIM, spectroscopic and Hirshfeld analysis, docking and dynamics simulation. Journal of Molecular Liquids, 330, 115652. https://doi.org/10.1016/j.molliq.2021.115652
MM Hasan. (2019). Advancing Personalized Treatment for Hepatocellular Carcinoma: Integrating Targeted Therapies, Precision Medicine, and Bioengineering for Improved Outcomes. Journal of Primeasia, 1.2(1), 1–14. https://doi.org/10.25163/primeasia.1110015
Modi, S. J., & Kulkarni, V. M. (2022). Exploration of structural requirements for the inhibition of VEGFR-2 tyrosine kinase: Binding site analysis of type II, ‘DFG-out’ inhibitors. Journal of Biomolecular Structure and Dynamics, 40(12), 5712–5727. https://doi.org/10.1080/07391102.2021.1872417
MSS Khan. (2024). Innovations in Cancer Research and Treatment. Australian Herbal Insight, 7(1), 1–12. https://doi.org/10.25163/ahi.7120050
Niazi, S. K., & Mariam, Z. (2023). Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis. Pharmaceuticals, 17(1), 22. https://doi.org/10.3390/ph17010022
Rahman, S. S., Klamrak, A., Mahat, N. C., Rahat, R. H., Nopkuesuk, N., Kamruzzaman, M., Janpan, P., Saengkun, Y., Nabnueangsap, J., Soonkum, T., Sangkudruea, P., Jangpromma, N., Kulchat, S., Patramanon, R., Chaveerach, A., Daduang, J., & Daduang, S. (2025). Thyroid Stimulatory Activity of Houttuynia cordata Thunb. Ethanolic Extract in 6-Propyl-Thiouracil-Induced Hypothyroid and STZ Induced Diabetes Rats: In Vivo and In Silico Studies. Nutrients, 17(3), 594. https://doi.org/10.3390/nu17030594
Roche, D., Brackenridge, D., & McGuffin, L. (2015). Proteins and Their Interacting Partners: An Introduction to Protein–Ligand Binding Site Prediction Methods. International Journal of Molecular Sciences, 16(12), 29829–29842. https://doi.org/10.3390/ijms161226202
Roskoski, R. (2014). The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacological Research, 79, 34–74. https://doi.org/10.1016/j.phrs.2013.11.002
Shah, M., Patel, M., Shah, M., Patel, M., & Prajapati, M. (2024). Computational transformation in drug discovery: A comprehensive study on molecular docking and quantitative structure activity relationship (QSAR). Intelligent Pharmacy, 2(5), 589–595. https://doi.org/10.1016/j.ipha.2024.03.001
Tolou-Ghamari, Z. (2024). Review of Hepatocellular Carcinoma and Liver Disease Prevalence. New Emirates Medical Journal, 05. https://doi.org/10.2174/0102506882271605231211102803
Tuffery, P., & Derreumaux, P. (2012). Flexibility and binding affinity in protein–ligand, protein–protein and multi-component protein interactions: limitations of current computational approaches. Journal of The Royal Society Interface, 9(66), 20–33. https://doi.org/10.1098/rsif.2011.0584
Varanasi, S. K., Chen, D., Liu, Y., Johnson, M. A., Miller, C. M., Ganguly, S., Lande, K., LaPorta, M. A., Hoffmann, F. A., Mann, T. H., Teneche, M. G., Casillas, E., Mangalhara, K. C., Mathew, V., Sun, M., Jensen, I. J., Farsakoglu, Y., Chen, T., Parisi, B., … Kaech, S. M. (2025). Bile acid synthesis impedes tumor-specific T cell responses during liver cancer. Science, 387(6730), 192–201. https://doi.org/10.1126/science.adl4100
Zhang, N., Tian, X., Liu, F., Jin, X., Zhang, J., Hao, L., Jiang, S., & Liu, Q. (2025). Reversal of sorafenib resistance in hepatocellular carcinoma by curcumol: insights from network pharmacology, molecular docking, and experimental validation. Frontiers in Pharmacology, 16. https://doi.org/10.3389/fphar.2025.1514997
Zhu, A. X. (2008). Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer, 112(2), 250–259. https://doi.org/10.1002/cncr.23175
View Dimensions
View Altmetric
Save
Citation
View
Share