References
Alam, M. M., Rahman, M. H., Ahmed, M. F., Chowdhury, M. Z., & Jang, Y. M. (2022). Deep learning based optimal energy management for photovoltaic and battery energy storage integrated home micro-grid system. Scientific Reports, 12(1), 15133. https://doi.org/10.1038/s41598-022-19147-y
Bajpai, P., & Dash, V. (2012). Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renewable and Sustainable Energy Reviews, 16(5), 2926–2939. https://doi.org/10.1016/j.rser.2012.02.009
Bousnina, D., & Guerassimoff, G. (2022). Deep reinforcement learning for optimal energy management of multi-energy smart grids. In Lecture notes in computer science (pp. 15–30). https://doi.org/10.1007/978-3-030-95470-3_2
Chen, Z., Guo, W., Zhao, R., Liu, Y., & Xie, H. (2022). Deep learning optimization of microgrid economic dispatch and wireless power transmission using blockchain. Wireless Communications and Mobile Computing, 2022(1). https://doi.org/10.1155/2022/2050031
Daid, R., Kumar, Y., Hu, Y., & Chen, W. (2021). An effective scheduling in data centres for efficient CPU usage and service level agreement fulfilment using machine learning. Connection Science, 33(4), 954–974. https://doi.org/10.1080/09540091.2021.1926929
Deng, Z., Qi, X., Xu, T., & Zheng, Y. (2022). Operational scheduling of Behind-the-Meter storage systems based on multiple nonstationary decomposition and deep convolutional neural network for price forecasting. Computational Intelligence and Neuroscience, 2022, 1–18. https://doi.org/10.1155/2022/9326856
Ebrahimi, K., Jones, G. F., & Fleischer, A. S. (2014). A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renewable and Sustainable Energy Reviews, 31, 622–638. https://doi.org/10.1016/j.rser.2013.12.007
Guo, C., Luo, F., Cai, Z., & Dong, Z. Y. (2021). Integrated energy systems of data centers and smart grids: State-of-the-art and future opportunities. Applied Energy, 301, 117474. https://doi.org/10.1016/j.apenergy.2021.117474
Huang, P., Copertaro, B., Zhang, X., Shen, J., Löfgren, I., Rönnelid, M., Fahlen, J., Andersson, D., & Svanfeldt, M. (2019). A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating. Applied Energy, 258, 114109. https://doi.org/10.1016/j.apenergy.2019.114109
Iliadis, P., Ntomalis, S., Atsonios, K., Nesiadis, A., Nikolopoulos, N., & Grammelis, P. (2020). Energy management and techno-economic assessment of a predictive battery storage system applying a load levelling operational strategy in island systems. International Journal of Energy Research, 45(2), 2709–2727. https://doi.org/10.1002/er.5963
Iwendi, C., & Wang, G. (2022). Combined power generation and electricity storage device using deep learning and internet of things technologies. Energy Reports, 8, 5016–5025. https://doi.org/10.1016/j.egyr.2022.02.304
Jose, R., Panigrahi, S. K., Patil, R. A., Fernando, Y., & Ramakrishna, S. (2020). Artificial Intelligence-Driven Circular Economy as a key enabler for sustainable energy management. Materials Circular Economy, 2(1). https://doi.org/10.1007/s42824-020-00009-9
Koronen, C., Åhman, M., & Nilsson, L. J. (2019). Data centres in future European energy systems—energy efficiency, integration and policy. Energy Efficiency, 13(1), 129–144. https://doi.org/10.1007/s12053-019-09833-8
Kwon, S. (2020). Ensuring renewable energy utilization with quality of service guarantee for energy-efficient data center operations. Applied Energy, 276, 115424. https://doi.org/10.1016/j.apenergy.2020.115424
Liu, G., Zhang, H., Shang, R., Wu, Z., & Song, Q. (2022). Hierarchical optimization scheduling of active demand response for distribution networks in 5G base stations. Wireless Communications and Mobile Computing, 2022(1). https://doi.org/10.1155/2022/8666749
Liu, Z., Gao, Y., & Liu, B. (2022). An artificial intelligence-based electric multiple units using a smart power grid system. Energy Reports, 8, 13376–13388. https://doi.org/10.1016/j.egyr.2022.09.138
Ni, J., & Bai, X. (2016). A review of air conditioning energy performance in data centers. Renewable and Sustainable Energy Reviews, 67, 625–640. https://doi.org/10.1016/j.rser.2016.09.050
Olatomiwa, L., Mekhilef, S., Ismail, & Moghavvemi, M. (2016). Energy management strategies in hybrid renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 62, 821–835. https://doi.org/10.1016/j.rser.2016.05.040
Oró, E., Depoorter, V., Garcia, A., & Salom, J. (2014). Energy efficiency and renewable energy integration in data centres. Strategies and modelling review. Renewable and Sustainable Energy Reviews, 42, 429–445. https://doi.org/10.1016/j.rser.2014.10.035
Papaefthymiou, G., & Dragoon, K. (2016). Towards 100% renewable energy systems: Uncapping power system flexibility. Energy Policy, 92, 69–82. https://doi.org/10.1016/j.enpol.2016.01.025
Peng, X., Bhattacharya, T., Cao, T., Mao, J., Tekreeti, T., & Qin, X. (2021). Exploiting renewable energy and UPS systems to reduce power consumption in data centers. Big Data Research, 27, 100306. https://doi.org/10.1016/j.bdr.2021.100306
Rochd, A., Benazzouz, A., Abdelmoula, I. A., Raihani, A., Ghennioui, A., Naimi, Z., & Ikken, B. (2021). Design and implementation of an AI-based & IoT-enabled Home Energy Management System: A case study in Benguerir — Morocco. Energy Reports, 7, 699–719. https://doi.org/10.1016/j.egyr.2021.07.084
Rong, H., Zhang, H., Xiao, S., Li, C., & Hu, C. (2016). Optimizing energy consumption for data centers. Renewable and Sustainable Energy Reviews, 58, 674–691. https://doi.org/10.1016/j.rser.2015.12.283
Rosero, D., Díaz, N., & Trujillo, C. (2021). Cloud and machine learning experiments applied to the energy management in a microgrid cluster. Applied Energy, 304, 117770. https://doi.org/10.1016/j.apenergy.2021.117770
Si, C., Tao, Y., Qiu, J., Lai, S., & Zhao, J. (2021). Deep reinforcement learning based home energy management system with devices operational dependencies. International Journal of Machine Learning and Cybernetics, 12(6), 1687–1703. https://doi.org/10.1007/s13042-020-01266-5
Wang, H., Huang, Z., Zhang, X., Huang, X., Zhang, X. W., & Liu, B. (2022). Intelligent power grid monitoring and management strategy using 3D model visual computation with deep learning. Energy Reports, 8, 3636–3648. https://doi.org/10.1016/j.egyr.2022.02.123
Wu, N., & Wang, H. (2018). Deep learning adaptive dynamic programming for real time energy management and control strategy of micro-grid. Journal of Cleaner Production, 204, 1169–1177. https://doi.org/10.1016/j.jclepro.2018.09.052
Yan, B., Hao, F., & Meng, X. (2020). When artificial intelligence meets building energy efficiency, a review focusing on zero energy building. Artificial Intelligence Review, 54(3), 2193–2220. https://doi.org/10.1007/s10462-020-09902-w
Yang, S., Zhang, Z., Cao, R., Wang, M., Cheng, H., Zhang, L., Jiang, Y., Li, Y., Chen, B., Ling, H., Lian, Y., Wu, B., & Liu, X. (2021). Implementation for a cloud battery management system based on the CHAIN framework. Energy and AI, 5, 100088. https://doi.org/10.1016/j.egyai.2021.100088
Zhang, Y., Wang, Y., & Wang, X. (2011). GreenWare: Greening Cloud-Scale data centers to maximize the use of renewable energy. In Lecture notes in computer science (pp. 143–164). https://doi.org/10.1007/978-3-642-25821-3_8