References
Akter, S., Michael, K., Uddin, M. R., McCarthy, G., & Rahman, M. (2020). Transforming business using digital innovations: the application of AI, blockchain, cloud and data analytics. Annals of Operations Research, 308(1–2), 7–39. https://doi.org/10.1007/s10479-020-03620-w
Alsaifi, K., Elnahass, M., & Salama, A. (2019). Carbon disclosure and financial performance: UK environmental policy. Business Strategy and the Environment, 29(2), 711–726. https://doi.org/10.1002/bse.2426
Al-Shari, H. A., & Lokhande, M. A. (2023). The relationship between the risks of adopting FinTech in banks and their impact on the performance. Cogent Business & Management, 10(1). https://doi.org/10.1080/23311975.2023.2174242
Al-Surmi, A., Bashiri, M., & Koliousis, I. (2021). AI based decision making: combining strategies to improve operational performance. International Journal of Production Research, 60(14), 4464–4486. https://doi.org/10.1080/00207543.2021.1966540
Aseeri, M., & Kang, K. (2023). Organisational culture and big data socio-technical systems on strategic decision making: Case of Saudi Arabian higher education. Education and Information Technologies, 28(7), 8999–9024. https://doi.org/10.1007/s10639-022-11500-y
Bhargava, A., Bester, M., & Bolton, L. (2020). Employees’ perceptions of the implementation of robotics, Artificial intelligence, and Automation (RAIA) on job satisfaction, job security, and employability. Journal of Technology in Behavioral Science, 6(1), 106–113. https://doi.org/10.1007/s41347-020-00153-8
Boute, R. N., Gijsbrechts, J., & Van Mieghem, J. A. (2021). Digital Lean Operations: smart automation and artificial intelligence in financial services. In Springer series in supply chain management (pp. 175–188). https://doi.org/10.1007/978-3-030-75729-8_6
Chowdhury, S., Rodriguez-Espindola, O., Dey, P., & Budhwar, P. (2022). Blockchain technology adoption for managing risks in operations and supply chain management: evidence from the UK. Annals of Operations Research, 327(1), 539–574. https://doi.org/10.1007/s10479-021-04487-1
Danese, P., & Kalchschmidt, M. (2010). The role of the forecasting process in improving forecast accuracy and operational performance. International Journal of Production Economics, 131(1), 204–214. https://doi.org/10.1016/j.ijpe.2010.09.006
Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
Grosu, V., Cosmulese, C. G., Socoliuc, M., Ciubotariu, M., & Mihaila, S. (2023). Testing accountants’ perceptions of the digitization of the profession and profiling the future professional. Technological Forecasting and Social Change, 193, 122630. https://doi.org/10.1016/j.techfore.2023.122630
Helo, P., & Hao, Y. (2021). Artificial intelligence in operations management and supply chain management: an exploratory case study. Production Planning & Control, 33(16), 1573–1590. https://doi.org/10.1080/09537287.2021.1882690
Hsu, M., Chang, C., & Zeng, J. (2022). Automated text mining process for corporate risk analysis and management. Risk Management, 24(4), 386–419. https://doi.org/10.1057/s41283-022-00099-6
Hsu, M., Hsin, Y., & Shiue, F. (2021). Business analytics for corporate risk management and performance improvement. Annals of Operations Research, 315(2), 629–669. https://doi.org/10.1007/s10479-021-04259-x
Ibrahim, S., & Lloyd, C. (2010). The association between non-financial performance measures in executive compensation contracts and earnings management. Journal of Accounting and Public Policy, 30(3), 256–274. https://doi.org/10.1016/j.jaccpubpol.2010.10.003
Ittner, C. D., & Michels, J. (2017). Risk-based forecasting and planning and management earnings forecasts. Review of Accounting Studies, 22(3), 1005–1047. https://doi.org/10.1007/s11142-017-9396-0
Johnson, M., Jain, R., Brennan-Tonetta, P., Swartz, E., Silver, D., Paolini, J., Mamonov, S., & Hill, C. (2021). Impact of big data and artificial intelligence on industry: Developing a Workforce Roadmap for a data Driven economy. Global Journal of Flexible Systems Management, 22(3), 197–217. https://doi.org/10.1007/s40171-021-00272-y
Khalifa, K., Al-Hashimi, M., & Hamdan, A. (2023). The factors affecting the adoption of artificial intelligence technologies in organizations. In Internet of things (pp. 237–265). https://doi.org/10.1007/978-3-031-35525-7_15
Li, X., Sigov, A., Ratkin, L., Ivanov, L. A., & Li, L. (2023). Artificial intelligence applications in finance: a survey. Journal of Management Analytics, 10(4), 676–692. https://doi.org/10.1080/23270012.2023.2244503
Mahalakshmi, V., Kulkarni, N., Kumar, K. P., Kumar, K. S., Sree, D. N., & Durga, S. (2021). The Role of implementing Artificial Intelligence and Machine Learning Technologies in the financial services Industry for creating Competitive Intelligence. Materials Today Proceedings, 56, 2252–2255. https://doi.org/10.1016/j.matpr.2021.11.577
Makhija, P., & Chacko, E. (2021). Efficiency and Advancement of Artificial Intelligence in Service Sector with Special Reference to Banking Industry. In Springer eBooks (pp. 21–35). https://doi.org/10.1007/978-981-16-3250-1_2
Met, I., Kabukçu, D., Uzunogullari, G., Soyalp, Ü., & Dakdevir, T. (2019). Transformation of Business Model in Finance Sector with Artificial Intelligence and Robotic Process Automation. In Contributions to management science (pp. 3–29). https://doi.org/10.1007/978-3-030-29739-8_1
Michaels, A., & Grüning, M. (2017). Relationship of corporate social responsibility disclosure on information asymmetry and the cost of capital. Journal of Management Control, 28(3), 251–274. https://doi.org/10.1007/s00187-017-0251-z
Milana, C., & Ashta, A. (2021). Artificial intelligence techniques in finance and financial markets: A survey of the literature. Strategic Change, 30(3), 189–209. https://doi.org/10.1002/jsc.2403
Nguyen, D. K., Sermpinis, G., & Stasinakis, C. (2022). Big data, artificial intelligence and machine learning: A transformative symbiosis in favour of financial technology. European Financial Management, 29(2), 517–548. https://doi.org/10.1111/eufm.12365
Petrozziello, A., Troiano, L., Serra, A., Jordanov, I., Storti, G., Tagliaferri, R., & La Rocca, M. (2022). Deep learning for volatility forecasting in asset management. Soft Computing, 26(17), 8553–8574. https://doi.org/10.1007/s00500-022-07161-1
Rana, N. P., Chatterjee, S., Dwivedi, Y. K., & Akter, S. (2021). Understanding dark side of artificial intelligence (AI) integrated business analytics: assessing firm’s operational inefficiency and competitiveness. European Journal of Information Systems, 31(3), 364–387. https://doi.org/10.1080/0960085x.2021.1955628
Suto, M., & Takehara, H. (2020). Corporate social responsibility intensity, management earnings forecast accuracy, and investor trust: Evidence from Japan. Corporate Social Responsibility and Environmental Management, 27(6), 3047–3059. https://doi.org/10.1002/csr.2022
Vibhakar, N. N., Tripathi, K. K., Johari, S., & Jha, K. N. (2020). Identification of significant financial performance indicators for the Indian construction companies. International Journal of Construction Management, 23(1), 13–23. https://doi.org/10.1080/15623599.2020.1844856
Walter, S. (2023). AI impacts on supply chain performance: a manufacturing use case study. Discover Artificial Intelligence, 3(1). https://doi.org/10.1007/s44163-023-00061-9