References
Alrowaily, M., Alenezi, F., & Lu, Z. (2019). Effectiveness of machine learning based intrusion detection systems. In Lecture notes in computer science (pp. 277–288). https://doi.org/10.1007/978-3-030-24907-6_21
Alsarhan, A., Al-Ghuwairi, A., Almalkawi, I. T., Alauthman, M., & Al-Dubai, A. (2020). Machine Learning-Driven optimization for intrusion detection in smart vehicular networks. Wireless Personal Communications, 117(4), 3129–3152. https://doi.org/10.1007/s11277-020-07797-y
Bécue, A., Praça, I., & Gama, J. (2021). Artificial intelligence, cyber-threats and Industry 4.0: challenges and opportunities. Artificial Intelligence Review, 54(5), 3849–3886. https://doi.org/10.1007/s10462-020-09942-2
Chaudhuri, N., & Bose, I. (2020). Exploring the role of deep neural networks for post-disaster decision support. Decision Support Systems, 130, 113234. https://doi.org/10.1016/j.dss.2019.113234
Danilov, V. V., Klyshnikov, K. Y., Gerget, O. M., Kutikhin, A. G., Ganyukov, V. I., Frangi, A. F., & Ovcharenko, E. A. (2021). Real-time coronary artery stenosis detection based on modern neural networks. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-87174-2
Geluvaraj, B., Satwik, P. M., & Kumar, T. a. A. (2018). The Future of Cybersecurity: Major role of artificial intelligence, machine learning, and deep learning in cyberspace. In Lecture notes on data engineering and communications technologies (pp. 739–747). https://doi.org/10.1007/978-981-10-8681-6_67
Gerke, S., Minssen, T., & Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. In Elsevier eBooks (pp. 295–336). https://doi.org/10.1016/b978-0-12-818438-7.00012-5
Jain, L. C., Seera, M., Lim, C. P., & Balasubramaniam, P. (2013). A review of online learning in supervised neural networks. Neural Computing and Applications, 25(3–4), 491–509. https://doi.org/10.1007/s00521-013-1534-4
Jang, J., Kim, Y., Choi, K., & Suh, S. (2021). Sequential targeting: A continual learning approach for data imbalance in text classification. Expert Systems With Applications, 179, 115067. https://doi.org/10.1016/j.eswa.2021.115067
Johnson, J. (2019). The AI-cyber nexus: implications for military escalation, deterrence and strategic stability. Journal of Cyber Policy, 4(3), 442–460. https://doi.org/10.1080/23738871.2019.1701693
Kalimuthan, C., & Renjit, J. A. (2020). Review on intrusion detection using feature selection with machine learning techniques. Materials Today Proceedings, 33, 3794–3802. https://doi.org/10.1016/j.matpr.2020.06.218
Kuzlu, M., Fair, C., & Guler, O. (2021). Role of Artificial Intelligence in the Internet of Things (IoT) cybersecurity. Discover Internet of Things, 1(1). https://doi.org/10.1007/s43926-020-00001-4
Liu, H., Zhong, C., Alnusair, A., & Islam, S. R. (2021). FAIXID: a framework for enhancing AI explainability of intrusion detection results using data cleaning techniques. Journal of Network and Systems Management, 29(4). https://doi.org/10.1007/s10922-021-09606-8
Lohiya, R., & Thakkar, A. (2021). Intrusion Detection Using Deep Neural Network with AntiRectifier Layer. In Lecture notes in networks and systems (pp. 89–105). https://doi.org/10.1007/978-981-33-6173-7_7
Mahbooba, B., Timilsina, M., Sahal, R., & Serrano, M. (2021). Explainable Artificial Intelligence (XAI) to enhance trust management in intrusion detection systems using Decision Tree model. Complexity, 2021(1). https://doi.org/10.1155/2021/6634811
Mori, S. (2018). US Defense Innovation and Artificial Intelligence. Asia-Pacific Review, 25(2), 16–44. https://doi.org/10.1080/13439006.2018.1545488
Muheidat, F., & Tawalbeh, L. (2021). Artificial intelligence and blockchain for cybersecurity applications. In Studies in big data (pp. 3–29). https://doi.org/10.1007/978-3-030-74575-2_1
Ogundokun, R. O., Awotunde, J. B., Sadiku, P., Adeniyi, E. A., Abiodun, M., & Dauda, O. I. (2021). An Enhanced Intrusion Detection System using Particle Swarm Optimization Feature Extraction Technique. Procedia Computer Science, 193, 504–512. https://doi.org/10.1016/j.procs.2021.10.052
Ozkan, I. A., Koklu, M., & Sert, I. U. (2018). Diagnosis of urinary tract infection based on artificial intelligence methods. Computer Methods and Programs in Biomedicine, 166, 51–59. https://doi.org/10.1016/j.cmpb.2018.10.007
Prasad, R., & Rohokale, V. (2019). Artificial intelligence and machine learning in cyber security. In Springer series in wireless technology (pp. 231–247). https://doi.org/10.1007/978-3-030-31703-4_16
Qureshi, Z., Maqbool, A., Mirza, A., Iqbal, M. Z., Afzal, F., Kanubala, D. D., Rana, T., Umair, M. Y., Wakeel, A., & Shah, S. K. (2021). Efficient prediction of missed clinical appointment using machine learning. Computational and Mathematical Methods in Medicine, 2021, 1–10. https://doi.org/10.1155/2021/2376391
Sarker, I. H., Furhad, M. H., & Nowrozy, R. (2021). AI-Driven Cybersecurity: An Overview, security intelligence modeling and research directions. SN Computer Science, 2(3). https://doi.org/10.1007/s42979-021-00557-0
Sewak, M., Sahay, S. K., & Rathore, H. (2022). Deep Reinforcement Learning for Cybersecurity Threat Detection and Protection: A review. Communications in Computer and Information Science, 51–72. https://doi.org/10.1007/978-3-030-97532-6_4
Sharma, J., Giri, C., Granmo, O., & Goodwin, M. (2019). Multi-layer intrusion detection system with ExtraTrees feature selection, extreme learning machine ensemble, and softmax aggregation. EURASIP Journal on Information Security, 2019(1). https://doi.org/10.1186/s13635-019-0098-y
Smith, G. (2018). The intelligent solution: automation, the skills shortage and cyber-security. Computer Fraud & Security, 2018(8), 6–9. https://doi.org/10.1016/s1361-3723(18)30073-3
Truong, T. C., Zelinka, I., Plucar, J., Candík, M., & Šulc, V. (2020). Artificial intelligence and cybersecurity: past, presence, and future. In Advances in intelligent systems and computing (pp. 351–363). https://doi.org/10.1007/978-981-15-0199-9_30
Walters, R., & Novak, M. (2021). Artificial Intelligence and Law. In Springer eBooks (pp. 39–69). https://doi.org/10.1007/978-981-16-1665-5_3
Wang, L., & Jones, R. (2020). Big data analytics in cyber Security: Network traffic and attacks. Journal of Computer Information Systems, 61(5), 410–417. https://doi.org/10.1080/08874417.2019.1688731
Yeng, P. K., Nweke, L. O., Woldaregay, A. Z., Yang, B., & Snekkenes, E. A. (2020). Data-Driven and Artificial Intelligence (AI) Approach for Modelling and Analyzing Healthcare security practice: A Systematic review. Advances in Intelligent Systems and Computing, 1–18. https://doi.org/10.1007/978-3-030-55180-3_1
You, H., Ma, Z., Tang, Y., Wang, Y., Yan, J., Ni, M., Cen, K., & Huang, Q. (2017). Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators. Waste Management, 68, 186–197. https://doi.org/10.1016/j.wasman.2017.03.044
Zou, H., Zhou, Y., Yang, J., & Spanos, C. J. (2018). Towards occupant activity driven smart buildings via WiFi-enabled IoT devices and deep learning. Energy and Buildings, 177, 12–22. https://doi.org/10.1016/j.enbuild.2018.08.010