References
Abbasi, M., Farokhnia, A., Bahreinimotlagh, M., & Roozbahani, R. (2020). A hybrid of Random Forest and Deep Auto-Encoder with support vector regression methods for accuracy improvement and uncertainty reduction of long-term streamflow prediction. Journal of Hydrology, 597, 125717. https://doi.org/10.1016/j.jhydrol.2020.125717
Akhter, R., & Sofi, S. A. (2021). Precision agriculture using IoT data analytics and machine learning. Journal of King Saud University - Computer and Information Sciences, 34(8), 5602–5618. https://doi.org/10.1016/j.jksuci.2021.05.013
AlKheder, S., AlRukaibi, F., & Aiash, A. (2022). Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN) and Bayesian Network for prediction and analysis of GCC traffic accidents. Journal of Ambient Intelligence and Humanized Computing, 14(6), 7331–7339. https://doi.org/10.1007/s12652-022-04441-4
Bradley, J. (2008). Management based critical success factors in the implementation of Enterprise Resource Planning systems. International Journal of Accounting Information Systems, 9(3), 175–200. https://doi.org/10.1016/j.accinf.2008.04.001
Broby, D. (2022). The use of predictive analytics in finance. The Journal of Finance and Data Science, 8, 145–161. https://doi.org/10.1016/j.jfds.2022.05.003
Caniëls, M. C., & Bakens, R. J. (2011). The effects of Project Management Information Systems on decision making in a multi project environment. International Journal of Project Management, 30(2), 162–175. https://doi.org/10.1016/j.ijproman.2011.05.005
Chen, W., Hasanipanah, M., Rad, H. N., Armaghani, D. J., & Tahir, M. M. (2019). A new design of evolutionary hybrid optimization of SVR model in predicting the blast-induced ground vibration. Engineering With Computers, 37(2), 1455–1471. https://doi.org/10.1007/s00366-019-00895-x
De Roure, D., Goble, C., & Stevens, R. (2008). The design and realisation of the Virtual Research Environment for social sharing of workflows. Future Generation Computer Systems, 25(5), 561–567. https://doi.org/10.1016/j.future.2008.06.010
Doost, E. Z., & Zhang, W. (2022). Mental workload variations during different cognitive office tasks with social media interruptions. Ergonomics, 66(5), 592–608. https://doi.org/10.1080/00140139.2022.2104381
Fang, S., Wang, Y., Chun, Y. S., Liu, H., Ross, M. I., Gershenwald, J. E., Cormier, J. N., Royal, R. E., Lucci, A., Schacherer, C. W., Reveille, J. D., Chen, W., Sui, D., Bassett, R. L., Wang, L., Wei, Q., Amos, C. I., & Lee, J. E. (2015). Association of Common Genetic Polymorphisms with Melanoma Patient IL-12p40 Blood Levels, Risk, and Outcomes. Journal of Investigative Dermatology, 135(9), 2266–2272. https://doi.org/10.1038/jid.2015.138
Ferrero-Arias, J., & Turrión-Rojo, M. (2016). Standardisation of the Test Your Memory and evaluation of their concordance with the outcome of the psychometric examination. Neurología (English Edition), 31(4), 239–246. https://doi.org/10.1016/j.nrleng.2015.03.006
Grover, V., Chiang, R. H., Liang, T., & Zhang, D. (2018). Creating Strategic Business Value from Big Data Analytics: A Research Framework. Journal of Management Information Systems, 35(2), 388–423. https://doi.org/10.1080/07421222.2018.1451951
Handelman, G. S., Kok, H. K., Chandra, R. V., Razavi, A. H., Lee, M. J., & Asadi, H. (2018). eDoctor: machine learning and the future of medicine. Journal of Internal Medicine, 284(6), 603–619. https://doi.org/10.1111/joim.12822
Hung, M., Chang, I., & Hwang, H. (2011). Exploring academic teachers’ continuance toward the web-based learning system: The role of causal attributions. Computers & Education, 57(2), 1530–1543. https://doi.org/10.1016/j.compedu.2011.02.001
Ibrahim, M. M., & Nat, M. (2019). Blended learning motivation model for instructors in higher education institutions. International Journal of Educational Technology in Higher Education, 16(1). https://doi.org/10.1186/s41239-019-0145-2
Jha, A. K., Agi, M. A., & Ngai, E. W. (2020). A note on big data analytics capability development in supply chain. Decision Support Systems, 138, 113382. https://doi.org/10.1016/j.dss.2020.113382
Lazar, D., & Denuit, M. M. (2011). Multivariate Analysis of Premium Dynamics in P&L Insurance. Journal of Risk & Insurance, 79(2), 431–448. https://doi.org/10.1111/j.1539-6975.2011.01431.x
Luo, J., Xu, J., Aldosari, O., Althubiti, S. A., & Deebani, W. (2022). Design and implementation of an efficient electronic bank management information system based data warehouse and data mining processing. Information Processing & Management, 59(6), 103086. https://doi.org/10.1016/j.ipm.2022.103086
Moreira, J. L. R. (2024). The role of interoperability for digital twins. In Lecture notes in business information processing (pp. 139–157). https://doi.org/10.1007/978-3-031-54712-6_9
Power, D. J. (2008). Decision Support Systems: A historical overview. In Springer eBooks (pp. 121–140). https://doi.org/10.1007/978-3-540-48713-5_7
Rabia, M. a. B., & Bellabdaoui, A. (2022). Simulation-based analytics: A systematic literature review. Simulation Modelling Practice and Theory, 117, 102511. https://doi.org/10.1016/j.simpat.2022.102511
Raymond, L., & Bergeron, F. (2007). Project management information systems: An empirical study of their impact on project managers and project success. International Journal of Project Management, 26(2), 213–220. https://doi.org/10.1016/j.ijproman.2007.06.002
Raza, B., Kumar, Y. J., Malik, A. K., Anjum, A., & Faheem, M. (2018). Performance prediction and adaptation for database management system workload using Case-Based Reasoning approach. Information Systems, 76, 46–58. https://doi.org/10.1016/j.is.2018.04.005
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818. https://doi.org/10.1016/j.oregeorev.2015.01.001
Samanpour, A. R., Ruegenberg, A., & Ahlers, R. (2017). The future of machine learning and predictive analytics. In Springer eBooks (pp. 297–309). https://doi.org/10.1007/978-3-662-49275-8_30
Scherer, R., & Schapke, S. (2011). A distributed multi-model-based Management Information System for simulation and decision-making on construction projects. Advanced Engineering Informatics, 25(4), 582–599. https://doi.org/10.1016/j.aei.2011.08.007
Stavrinides, G. L., & Karatza, H. D. (2018). A hybrid approach to scheduling real-time IoT workflows in fog and cloud environments. Multimedia Tools and Applications, 78(17), 24639–24655. https://doi.org/10.1007/s11042-018-7051-9
Tortoli, E., Passigli, S., Scrimitore, A., Raschi, A., Depalma, A., Giovannico, G., & Pellicciari, L. (2023). Translation, cross-cultural adaptation and validation of the Italian version of the knee outcome survey − activities of daily living scale. Musculoskeletal Science and Practice, 63, 102716. https://doi.org/10.1016/j.msksp.2023.102716
Vellido, A. (2019). The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Computing and Applications, 32(24), 18069–18083. https://doi.org/10.1007/s00521-019-04051-w
Wang, Y., Kung, L., & Byrd, T. A. (2016). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3–13. https://doi.org/10.1016/j.techfore.2015.12.019