References
Abisoye, A., & Akerele, J. I. (2021). A High-Impact Data-Driven Decision-Making Model for Integrating Cutting-Edge Cybersecurity Strategies into Public Policy, Governance, and Organizational Frameworks. International Journal of Multidisciplinary Research and Growth Evaluation, 2(1), 623–637. https://doi.org/10.54660/.ijmrge.2021.2.1.623-637
Akter, S., Bandara, R., Hani, U., Wamba, S. F., Foropon, C., & Papadopoulos, T. (2019). Analytics-based decision-making for service systems: A qualitative study and agenda for future research. International Journal of Information Management, 48, 85–95. https://doi.org/10.1016/j.ijinfomgt.2019.01.020
Azvine, B., Cui, Z., & Nauck, D. D. (2005). Towards real-time business intelligence. BT Technology Journal, 23(3), 214–225. https://doi.org/10.1007/s10550-005-0043-0
Bag, S., Wood, L. C., Xu, L., Dhamija, P., & Kayikci, Y. (2019). Big data analytics as an operational excellence approach to enhance sustainable supply chain performance. Resources Conservation and Recycling, 153, 104559. https://doi.org/10.1016/j.resconrec.2019.104559
Brock, V., & Khan, H. U. (2017). Big data analytics: does organizational factor matters impact technology acceptance? Journal of Big Data, 4(1). https://doi.org/10.1186/s40537-017-0081-8
Bussa, S. (2023). Enhancing BI tools for improved data visualization and insights. International Journal of Computer Science and Mobile Computing, 12(2), 70–92. https://doi.org/10.47760/ijcsmc.2023.v12i02.005
Chae, B., Yang, C., Olson, D., & Sheu, C. (2013). The impact of advanced analytics and data accuracy on operational performance: A contingent resource based theory (RBT) perspective. Decision Support Systems, 59, 119–126. https://doi.org/10.1016/j.dss.2013.10.012
Craig, T., & Campbell, D. (2012). Organisations and the business environment. In Routledge eBooks. https://doi.org/10.4324/9780080454603
Del Mar Alonso-Almeida, M., Bremser, K., & Llach, J. (2015). Proactive and reactive strategies deployed by restaurants in times of crisis. International Journal of Contemporary Hospitality Management, 27(7), 1641–1661. https://doi.org/10.1108/ijchm-03-2014-0117
Francis, R., & Bekera, B. (2013). A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliability Engineering & System Safety, 121, 90–103. https://doi.org/10.1016/j.ress.2013.07.004
Greenwood, M., & Van Buren, H. J., III. (2010). Trust and Stakeholder Theory: Trustworthiness in the Organisation–Stakeholder relationship. Journal of Business Ethics, 95(3), 425–438. https://doi.org/10.1007/s10551-010-0414-4
Hannila, H., Kuula, S., Harkonen, J., & Haapasalo, H. (2020). Digitalisation of a company decision-making system: a concept for data-driven and fact-based product portfolio management. Journal of Decision System, 31(3), 258–279. https://doi.org/10.1080/12460125.2020.1829386
Islam, S., & Amin, S. H. (2020). Prediction of probable backorder scenarios in the supply chain using Distributed Random Forest and Gradient Boosting Machine learning techniques. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00345-2
Kalaitzi, D., & Tsolakis, N. (2022). Supply chain analytics adoption: Determinants and impacts on organisational performance and competitive advantage. International Journal of Production Economics, 248, 108466. https://doi.org/10.1016/j.ijpe.2022.108466
Kalusivalingam, A. K., Sharma, A., Patel, N., & Singh, V. (2022, February 23). Leveraging random forests and gradient boosting for enhanced predictive analytics in operational efficiency. https://cognitivecomputingjournal.com/index.php/IJAIML-V1/article/view/72
Kamble, S. S., & Gunasekaran, A. (2019). Big data-driven supply chain performance measurement system: a review and framework for implementation. International Journal of Production Research, 58(1), 65–86. https://doi.org/10.1080/00207543.2019.1630770
Kitchens, B., Dobolyi, D., Li, J., & Abbasi, A. (2018). Advanced Customer Analytics: Strategic value through integration of Relationship-Oriented Big Data. Journal of Management Information Systems, 35(2), 540–574. https://doi.org/10.1080/07421222.2018.1451957
Kumar, N. (2022). IoT-Enabled Real-Time Data integration in ERP systems. International Journal of Scientific Research in Science Engineering and Technology, 393–410. https://doi.org/10.32628/ijsrset2215479
Lee, J., Ni, J., Singh, J., Jiang, B., Azamfar, M., & Feng, J. (2020). Intelligent maintenance systems and predictive manufacturing. Journal of Manufacturing Science and Engineering, 142(11). https://doi.org/10.1115/1.4047856
Lyytinen, N., & Rose, N. (2003). The disruptive nature of information technology innovations: the case of internet computing in systems development organizations. MIS Quarterly, 27(4), 557. https://doi.org/10.2307/30036549
Meng, J., & Berger, B. K. (2012). Measuring return on investment (ROI) of organizations’ internal communication efforts. Journal of Communication Management, 16(4), 332–354. https://doi.org/10.1108/13632541211278987
Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big Data Analytics Capabilities and Innovation: The mediating role of dynamic capabilities and moderating effect of the environment. British Journal of Management, 30(2), 272–298. https://doi.org/10.1111/1467-8551.12343
Müller, O., Junglas, I., Brocke, J. V., & Debortoli, S. (2016). Utilizing big data analytics for information systems research: challenges, promises and guidelines. European Journal of Information Systems, 25(4), 289–302. https://doi.org/10.1057/ejis.2016.2
Mutula, S. M., & Van Brakel, P. (2007). ICT skills readiness for the emerging global digital economy among small businesses in developing countries. Library Hi Tech, 25(2), 231–245. https://doi.org/10.1108/07378830710754992
Niu, Y., Ying, L., Yang, J., Bao, M., & Sivaparthipan, C. (2021). Organizational business intelligence and decision making using big data analytics. Information Processing & Management, 58(6), 102725. https://doi.org/10.1016/j.ipm.2021.102725
Onwuegbuzie, A. J., Slate, J. R., Leech, N. L., & Collins, K. M. (2009). Mixed data analysis: Advanced integration techniques. International Journal of Multiple Research Approaches, 3(1), 13–33. https://doi.org/10.5172/mra.455.3.1.13
Peng, Y., Zhang, Y., Tang, Y., & Li, S. (2010). An incident information management framework based on data integration, data mining, and multi-criteria decision making. Decision Support Systems, 51(2), 316–327. https://doi.org/10.1016/j.dss.2010.11.025
Poritskiy, N., Oliveira, F., & Almeida, F. (2019). The benefits and challenges of general data protection regulation for the information technology sector. Digital Policy Regulation and Governance, 21(5), 510–524. https://doi.org/10.1108/dprg-05-2019-0039
Psarommatis, F., Danishvar, M., Mousavi, A., & Kiritsis, D. (2022). Cost-Based Decision Support System: A dynamic cost estimation of key performance indicators in manufacturing. IEEE Transactions on Engineering Management, 71, 702–714. https://doi.org/10.1109/tem.2021.3133619
Raj, P., Raman, A., Nagaraj, D., & Duggirala, S. (2015). High-Performance Big-Data Analytics. In Computer communications and networks. https://doi.org/10.1007/978-3-319-20744-5
Ramakrishnan, T., Khuntia, J., Kathuria, A., & Saldanha, T. J. (2019). An Integrated Model of Business Intelligence & Analytics Capabilities and Organizational Performance. Communications of the Association for Information Systems, 46(1), 722–750. https://doi.org/10.17705/1cais.04631
Reijers, H. A., & Van Der Aalst, W. M. (2005). The effectiveness of workflow management systems: Predictions and lessons learned. International Journal of Information Management, 25(5), 458–472. https://doi.org/10.1016/j.ijinfomgt.2005.06.008
Sarker, I. H. (2021). Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective. SN Computer Science, 2(5). https://doi.org/10.1007/s42979-021-00765-8
Seddon, P. B., Constantinidis, D., Tamm, T., & Dod, H. (2016). How does business analytics contribute to business value? Information Systems Journal, 27(3), 237–269. https://doi.org/10.1111/isj.12101
Seggie, S. H., Cavusgil, E., & Phelan, S. E. (2007). Measurement of return on marketing investment: A conceptual framework and the future of marketing metrics. Industrial Marketing Management, 36(6), 834–841. https://doi.org/10.1016/j.indmarman.2006.11.001
Sharma, A. K., Sharma, D. M., Purohit, N., Rout, S. K., & Sharma, S. A. (2021b). Analytics techniques: descriptive analytics, predictive analytics, and prescriptive analytics. In EAI/Springer Innovations in Communication and Computing (pp. 1–14). https://doi.org/10.1007/978-3-030-82763-2_1
Shen, Y., Chen, P., & Wang, C. (2015). A study of enterprise resource planning (ERP) system performance measurement using the quantitative balanced scorecard approach. Computers in Industry, 75, 127–139. https://doi.org/10.1016/j.compind.2015.05.006
Someh, I., Shanks, G., & Davern, M. (2019). Reconceptualizing synergy to explain the value of business analytics systems. Journal of Information Technology, 34(4), 371–391. https://doi.org/10.1177/0268396218816210
Strielkowski, W., Vlasov, A., Selivanov, K., Muraviev, K., & Shakhnov, V. (2023). Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review. Energies, 16(10), 4025. https://doi.org/10.3390/en16104025
Van De Wetering, R., Mikalef, P., & Helms, R. (2017). Driving organizational sustainability-oriented innovation capabilities: a complex adaptive systems perspective. Current Opinion in Environmental Sustainability, 28, 71–79. https://doi.org/10.1016/j.cosust.2017.08.006
Vassakis, K., Petrakis, E., & Kopanakis, I. (2017). Big Data Analytics: applications, prospects and challenges. In Lecture notes on data engineering and communications technologies (pp. 3–20). https://doi.org/10.1007/978-3-319-67925-9_1
Vudugula, S., Chebrolu, S. K., Bhuiyan, M., & Rozony, F. Z. (2023). INTEGRATING ARTIFICIAL INTELLIGENCE IN STRATEGIC BUSINESS DECISION-MAKING: A SYSTEMATIC REVIEW OF PREDICTIVE MODELS. International Journal of Scientific Interdisciplinary Research, 04(01), 01–26. https://doi.org/10.63125/s5skge53
Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98–110. https://doi.org/10.1016/j.ijpe.2016.03.014
Wang, Y., & Byrd, T. A. (2017). Business analytics-enabled decision-making effectiveness through knowledge absorptive capacity in health care. Journal of Knowledge Management, 21(3), 517–539. https://doi.org/10.1108/jkm-08-2015-0301
Yang, Y., Chen, N., & Chen, H. (2023). The digital platform, enterprise digital transformation, and enterprise performance of Cross-Border E-Commerce—From the perspective of digital transformation and data elements. Journal of Theoretical and Applied Electronic Commerce Research, 18(2), 777–794. https://doi.org/10.3390/jtaer18020040
Zhang, C., Wang, X., Cui, A. P., & Han, S. (2020). Linking big data analytical intelligence to customer relationship management performance. Industrial Marketing Management, 91, 483–494. https://doi.org/10.1016/j.indmarman.2020.10.012