References
Andriosopoulos, D., Doumpos, M., Pardalos, P. M., & Zopounidis, C. (2019). Computational approaches and data analytics in financial services: A literature review. Journal of the Operational Research Society, 70(10), 1581–1599. https://doi.org/10.1080/01605682.2019.1595193
Atuahene, B. T., Kanjanabootra, S., & Gajendran, T. (2022). Transformative role of big data through enabling capability recognition in construction. Construction Management and Economics, 41(3), 208–231. https://doi.org/10.1080/01446193.2022.2132523
Bhatore, S., Mohan, L., & Reddy, Y. R. (2020). Machine learning techniques for credit risk evaluation: a systematic literature review. Journal of Banking and Financial Technology, 4(1), 111–138. https://doi.org/10.1007/s42786-020-00020-3
Bose, R., & Luo, X. (2011). Integrative framework for assessing firms’ potential to undertake Green IT initiatives via virtualization – A theoretical perspective. The Journal of Strategic Information Systems, 20(1), 38–54. https://doi.org/10.1016/j.jsis.2011.01.003
Broby, D. (2022). The use of predictive analytics in finance. The Journal of Finance and Data Science, 8, 145–161. https://doi.org/10.1016/j.jfds.2022.05.003
Carvalho, H., Azevedo, S. G., & Cruz-Machado, V. (2012). Agile and resilient approaches to supply chain management: influence on performance and competitiveness. Logistics Research, 4(1–2), 49–62. https://doi.org/10.1007/s12159-012-0064-2
Coombs, C. R. (2014). When planned IS/IT project benefits are not realized: a study of inhibitors and facilitators to benefits realization. International Journal of Project Management, 33(2), 363–379. https://doi.org/10.1016/j.ijproman.2014.06.012
Cornwell, N., Bilson, C., Gepp, A., Stern, S., & Vanstone, B. J. (2022). The role of data analytics within operational risk management: A systematic review from the financial services and energy sectors. Journal of the Operational Research Society, 74(1), 374–402. https://doi.org/10.1080/01605682.2022.2041373
Doumpos, M., Lemonakis, C., Niklis, D., & Zopounidis, C. (2018). Analytical techniques in the assessment of credit risk. In EURO advanced tutorials on operational research. https://doi.org/10.1007/978-3-319-99411-6
Duan, L., & Xiong, Y. (2015). Big data analytics and business analytics. Journal of Management Analytics, 2(1), 1–21. https://doi.org/10.1080/23270012.2015.1020891
Ghosh, B., & Scott, J. E. (2011). Antecedents and Catalysts for developing a healthcare analytic Capability. Communications of the Association for Information Systems, 29. https://doi.org/10.17705/1cais.02922
Grover, V., Chiang, R. H., Liang, T., & Zhang, D. (2018). Creating Strategic Business Value from Big Data Analytics: A Research Framework. Journal of Management Information Systems, 35(2), 388–423. https://doi.org/10.1080/07421222.2018.1451951
Guetterman, T. C., Fetters, M. D., & Creswell, J. W. (2015). Integrating quantitative and qualitative results in health science mixed methods research through joint displays. The Annals of Family Medicine, 13(6), 554–561. https://doi.org/10.1370/afm.1865
Gunasekaran, A., Lai, K., & Edwincheng, T. (2007). Responsive supply chain: A competitive strategy in a networked economy?. Omega, 36(4), 549–564. https://doi.org/10.1016/j.omega.2006.12.002
Ismail, H. S., Poolton, J., & Sharifi, H. (2011). The role of agile strategic capabilities in achieving resilience in manufacturing-based small companies. International Journal of Production Research, 49(18), 5469–5487. https://doi.org/10.1080/00207543.2011.563833
Matovic, N., & Ovesni, K. (2021). Interaction of quantitative and qualitative methodology in mixed methods research: integration and/or combination. International Journal of Social Research Methodology, 26(1), 51–65. https://doi.org/10.1080/13645579.2021.1964857
Mazzarol, T. (2014). Research review: A review of the latest research in the field of small business and entrepreneurship. Small Enterprise Research, 21(1), 2–13. https://doi.org/10.1080/13215906.2014.11082073
Morr, C. E., Jammal, M., Ali-Hassan, H., & Ei-Hallak, W. (2022). Machine learning for practical decision making. In International series in management science/operations research/International series in operations research & management science. https://doi.org/10.1007/978-3-031-16990-8
Östlund, U., Kidd, L., Wengström, Y., & Rowa-Dewar, N. (2010). Combining qualitative and quantitative research within mixed method research designs: A methodological review. International Journal of Nursing Studies, 48(3), 369–383. https://doi.org/10.1016/j.ijnurstu.2010.10.005
Poornima, S., & Pushpalatha, M. (2020). A survey on various applications of prescriptive analytics. International Journal of Intelligent Networks, 1, 76–84. https://doi.org/10.1016/j.ijin.2020.07.001
Raj, P., Raman, A., Nagaraj, D., & Duggirala, S. (2015). The High-Performance Technologies for big and fast data analytics. In Computer communications and networks (pp. 25–66). https://doi.org/10.1007/978-3-319-20744-5_2
Reference
Sanchez, R. (1997). Preparing for an uncertain future. International Studies of Management and Organization, 27(2), 71–94. https://doi.org/10.1080/00208825.1997.11656708
Sarker, I. H. (2021). Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective. SN Computer Science, 2(5). https://doi.org/10.1007/s42979-021-00765-8
Sassanelli, C., & Terzi, S. (2022). The D-BEST Reference Model: a flexible and sustainable support for the digital transformation of small and medium enterprises. Global Journal of Flexible Systems Management, 23(3), 345–370. https://doi.org/10.1007/s40171-022-00307-y
Sharma, A. K., Sharma, D. M., Purohit, N., Rout, S. K., & Sharma, S. A. (2021). Analytics techniques: descriptive analytics, predictive analytics, and prescriptive analytics. In EAI/Springer Innovations in Communication and Computing (pp. 1–14). https://doi.org/10.1007/978-3-030-82763-2_1
Sharma, R., Mithas, S., & Kankanhalli, A. (2014). Transforming decision-making processes: a research agenda for understanding the impact of business analytics on organisations. European Journal of Information Systems, 23(4), 433–441. https://doi.org/10.1057/ejis.2014.17
Teece, D. J. (2014). The Foundations of Enterprise Performance: Dynamic and Ordinary capabilities in an (Economic) Theory of Firms. Academy of Management Perspectives, 28(4), 328–352. https://doi.org/10.5465/amp.2013.0116
Vidgen, R., Shaw, S., & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626–639. https://doi.org/10.1016/j.ejor.2017.02.023
Yang, B., Burns, N. D., & Backhouse, C. J. (2004). Management of uncertainty through postponement. International Journal of Production Research, 42(6), 1049–1064. https://doi.org/10.1080/00207540310001631601