References
Ahmad, N. A., Musa, S., Kasim, N. H. A., & Naimie, Z. (2025). Development of a questionnaire to evaluate attributes, competencies, needs, and challenges in the career development of dental academics. Journal of Dental Education. https://doi.org/10.1002/jdd.13918
Alghamdi, N. A., & Al-Baity, H. H. (2022). Augmented Analytics Driven by AI: A Digital Transformation beyond Business Intelligence. Sensors, 22(20), 8071. https://doi.org/10.3390/s22208071
Alghamdi, O. A., & Agag, G. (2023). Boosting Innovation Performance through Big Data Analytics Powered by Artificial Intelligence Use: An Empirical Exploration of the Role of Strategic Agility and Market Turbulence. Sustainability, 15(19), 14296. https://doi.org/10.3390/su151914296
Casati, F., Govindarajan, K., Jayaraman, B., Thakur, A., Palapudi, S., Karakusoglu, F., & Chatterjee, D. (2019). Operating enterprise AI as a service. In Lecture notes in computer science (pp. 331–344). https://doi.org/10.1007/978-3-030-33702-5_25\
Das, B. C., Mahabub, S., & Hossain, M. R. (2024). Empowering modern business intelligence (BI) tools for data-driven decision-making: Innovations with AI and analytics insights. Edelweiss Applied Science and Technology, 8(6), 8333-8346.
Davenport, T. H. (2018b). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73–80. https://doi.org/10.1080/2573234x.2018.1543535
Davenport, T. H. (2018c). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73–80. https://doi.org/10.1080/2573234x.2018.1543535
Delen, D., & Ram, S. (2018). Research challenges and opportunities in business analytics. Journal of Business Analytics, 1(1), 2–12. https://doi.org/10.1080/2573234x.2018.1507324
Delen, D., & Zolbanin, H. M. (2018). The analytics paradigm in business research. Journal of Business Research, 90, 186–195. https://doi.org/10.1016/j.jbusres.2018.05.013
Etemad, H. (2025). Challenges of smaller entrepreneurial enterprises aiming to generate higher values by adopting artificial intelligence (AI) and competing in the rapidly evolving AI industry. Journal of International Entrepreneurship. https://doi.org/10.1007/s10843-025-00385-w
Henriksen, A., & Bechmann, A. (2020). Building truths in AI: Making predictive algorithms doable in healthcare. Information Communication & Society, 23(6), 802–816. https://doi.org/10.1080/1369118x.2020.1751866
Howley, T., Madden, M. G., O’Connell, M., & Ryder, A. G. (2007). The Effect of Principal Component Analysis on Machine Learning Accuracy with High Dimensional Spectral Data. In Springer eBooks (pp. 209–222). https://doi.org/10.1007/1-84628-224-1_16
Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy Artificial Intelligence. Government Information Quarterly, 37(3), 101493. https://doi.org/10.1016/j.giq.2020.101493
Kilpatrick, K., Tchouaket, É., Paquette, L., Guillemette, C., Jabbour, M., Desmeules, F., Landry, V., & Fernandez, N. (2019). Measuring patient and family perceptions of team processes and outcomes in healthcare teams: questionnaire development and psychometric evaluation. BMC Health Services Research, 19(1). https://doi.org/10.1186/s12913-018-3808-0
Kulkarni, V., Reddy, S., Clark, T., & Proper, H. (2023). The AI-Enabled enterprise. In ?The ?enterprise engineering series (pp. 1–12). https://doi.org/10.1007/978-3-031-29053-4_1
Leão, P., & Da Silva, M. M. (2021). Impacts of digital transformation on firms’ competitive advantages: A systematic literature review. Strategic Change, 30(5), 421–441. https://doi.org/10.1002/jsc.2459
Lee, J., Singh, J., Azamfar, M., & Pandhare, V. (2020). Industrial AI and predictive analytics for smart manufacturing systems. In Smart Manufacturing (pp. 213–244). https://doi.org/10.1016/b978-0-12-820027-8.00008-3
Ojeda, A. M., Valera, J. B., & Diaz, O. (2025). Artificial intelligence of big data for analysis in organizational Decision-Making. Global Journal of Flexible Systems Management. https://doi.org/10.1007/s40171-025-00450-2
Pandarathodiyil, A. K., Mani, S. A., Veerabhadrappa, S. K., Danaee, M., & Zamzuri, A. T. B. (2024). Cross-cultural validation of Malay version of perceived professionalism among dental patients. BDJ Open, 10(1). https://doi.org/10.1038/s41405-024-00234-3
Schmitt, M. (2023). Automated machine learning: AI-driven decision making in business analytics. Intelligent Systems with Applications, 18, 200188.
Seo, C., Yoo, D., & Lee, Y. (2024). Empowering Sustainable Industrial and Service Systems through AI-Enhanced Cloud Resource Optimization. Sustainability, 16(12), 5095. https://doi.org/10.3390/su16125095
Sharma, S., Gahlawat, V. K., Rahul, K., Mor, R. S., & Malik, M. (2021). Sustainable Innovations in the Food Industry through Artificial Intelligence and Big Data Analytics. Logistics, 5(4), 66. https://doi.org/10.3390/logistics5040066
Su, Z., Togay, G., & Côté, A. (2020). Artificial intelligence: a destructive and yet creative force in the skilled labour market. Human Resource Development International, 24(3), 341–352. https://doi.org/10.1080/13678868.2020.1818513
Thayyib, P. V., Mamilla, R., Khan, M., Fatima, H., Asim, M., Anwar, I., Shamsudheen, M. K., & Khan, M. A. (2023). State-of-the-Art of artificial intelligence and big data analytics reviews in five different domains: A bibliometric summary. Sustainability, 15(5), 4026. https://doi.org/10.3390/su15054026
Tomczyk, S., Aghdassi, S., Storr, J., Hansen, S., Stewardson, A., Bischoff, P., Gastmeier, P., & Allegranzi, B. (2019). Testing of the WHO Infection Prevention and Control Assessment Framework at acute healthcare facility level. Journal of Hospital Infection, 105(1), 83–90. https://doi.org/10.1016/j.jhin.2019.12.016
Vogel, K. M., Reid, G., Kampe, C., & Jones, P. (2021). The impact of AI on intelligence analysis: tackling issues of collaboration, algorithmic transparency, accountability, and management. Intelligence & National Security, 36(6), 827–848. https://doi.org/10.1080/02684527.2021.1946952
Von Garrel, J., & Jahn, C. (2022). Design Framework for the implementation of AI-based (Service) business models for small and medium-sized manufacturing enterprises. Journal of the Knowledge Economy, 14(3), 3551–3569. https://doi.org/10.1007/s13132-022-01003-z
Yigitcanlar, T., David, A., Li, W., Fookes, C., Bibri, S. E., & Ye, X. (2024). Unlocking Artificial Intelligence Adoption in Local Governments: Best Practice Lessons from Real-World Implementations. Smart Cities, 7(4), 1576–1625. https://doi.org/10.3390/smartcities7040064
Younes, K., Kharboutly, Y., Antar, M., Chaouk, H., Obeid, E., Mouhtady, O., Abu-Samha, M., Halwani, J., & Murshid, N. (2023). Application of Unsupervised Machine Learning for the Evaluation of Aerogels’ Efficiency towards Ion Removal—A Principal Component Analysis (PCA) Approach. Gels, 9(4), 304. https://doi.org/10.3390/gels9040304
Zong, Z., & Guan, Y. (2024b). AI-Driven intelligent data Analytics and predictive Analysis in Industry 4.0: Transforming knowledge, innovation, and efficiency. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-024-02001-z