Antibiotic Resistance Trends in Urinary Tract Infections: A Growing Concern for Immunocompromised Patients
Md Sakil Amin1*
Microbial Bioactives 4(1) 1-8 https://doi.org/10.25163/microbbioacts.6110261
Submitted: 08 June 2021 Revised: 06 August 2021 Published: 10 August 2021
Abstract
Urinary tract infections (UTIs) rank among the most prevalent bacterial infections globally, posing significant health risks to immunocompromised patients including individuals with cancer, diabetes, HIV/AIDS, or post-organ transplantation due to their compromised immune systems and frequent hospital exposure. Rising antibiotic resistance in common uropathogens, such as Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus spp., and Pseudomonas aeruginosa, has critically limited the effectiveness of first-line antibiotics, including fluoroquinolones, trimethoprim-sulfamethoxazole, and beta-lactams. Resistance mechanisms such as extended-spectrum beta-lactamases (ESBLs), carbapenemases, efflux pumps, and plasmid-mediated resistance genes like mcr-1 have further intensified this challenge. Immunocompromised patients are particularly vulnerable to infections by multidrug-resistant (MDR) strains, resulting in higher treatment failure rates, prolonged hospitalizations, and increased mortality especially in cases involving carbapenem-resistant Enterobacteriaceae (CRE) and vancomycin-resistant Enterococcus (VRE). This escalating resistance crisis demands immediate global attention through enhanced surveillance, strict antimicrobial stewardship, and the development of innovative therapeutic strategies to safeguard high-risk populations. This review highlights recent resistance patterns in UTI-causing pathogens, underscores the heightened risks faced by immunocompromised individuals, and advocates for urgent, coordinated interventions to preserve the efficacy of current treatments and protect vulnerable patients from avoidable complications.
Keywords: Antibiotic resistance, Urinary tract infections (UTIs), Immunocompromised patients, Multidrug-resistant bacteria (MDR).
References
Abdullah, M., Al-Mamun, A., Alam, M. J., & Rahman, M. M. (2024). Bacteriophage therapy as an alternative treatment option for multidrug-resistant urinary tract infections. Journal of Infection and Public Health, 17(2), 150–158. https://doi.org/10.1016/j.jiph.2023.10.003
Abraham, S., O'Dea, M., Trott, D. J., & Abraham, R. J. (2018). Isolation and characterization of multidrug-resistant Escherichia coli from community-acquired urinary tract infections in Australia. Antimicrobial Agents and Chemotherapy, 62(4), e02130-17.
Ahmad M., Hussaini I.M. et al. (2021). Evaluation of Dye decolourization Potential of Laccase Producing TrichodermaharzianumDBS-1 and TrichodermaviridaeDBS-2, Journal of Primeasia, 2(1), 1-5, 20215.
Ahmed, S. S., Shariati, A., Ranjbar, R., & Behzadi, P. (2019). Uropathogenic Escherichia coli and antibiotic resistance. International Journal of Molecular Sciences, 20(19), 5505.
Alebouyeh, M., Tajbakhsh, M., & Khoramrooz, S. S. (2017). Prevalence of ESBL-producing Escherichia coli in UTI patients and antibiotic resistance trends. Infection and Drug Resistance, 10, 367-375.
Ali, H. M., & Abdel Hamid, M. I. (2024). The urinary tract microbiome: A new frontier in urinary tract infection research. International Journal of Microbiology Research, 16(1), 45–52.
Alomair , R. M., Alkiady , &. I., Alkhamees , &. A., Alyani , &. A. A., Alharbi , S. S. A., Aldalili , A. Y. A., Alruki , K. O. A., Almarshed, B. O. N., Alruwaili , M. M., Aldalbahi , T. G. T., AImutairi , H. B. B., Aldawsari , &. H. A., khathami , M. M. M. A., Alanazi, S. S., , Al-Shahri , A. H. M., Al-Shahrani , H. D. T., bahanshel, &. A., Al-Anzi, B. T. A. (2021). “Advancing Safety and Efficiency in Hazardous Drug Management: Analytical Critique, Constraints, and Systematic Review Insights”, Journal of Primeasia, 2(1),1-7,10076
Al-Qahtani, F. F. M., Al-Turaiki, T. M., Alharbi, S. S. A., Almubarak, A. A., Αναζι, A. A. M., Alotaibai, A. M., Alotaibi, M., Alshammari, S. K., Albaqami, B. K. S., Altuwaijri, F. A., Al-Anzi, B. T. A., Bahanshel, A. (2022). Enhancing medication safety and care transitions: A systematic review of roles and strategies in healthcare settings. Journal of Primeasia, 3(1), 1-10. https://doi.org/10077
Ann Nema Thomas and Sandra Magdalene (2021). Adherence to Surgical Antibiotic Prophylaxis in Surgery: A Prospective Study, Journal of Primeasia, 2(1), 1-2, 20219
Asha B, Palaniswamy M (2021). Study of The Applications of Alkaline Protease Produced by Soil-Isolated Bacillus cereus FT 11, Journal of Primeasia, 2(1), 1-6, 20214
Becker, K., Heilmann, C., & Peters, G. (2020). Rapid diagnostic methods for detection of multidrug-resistant urinary tract pathogens. Clinical Microbiology Reviews, 33(4), e00081-19.
Becker, M., Arnold, R., & Scholz, M. (2020). Machine learning for antimicrobial resistance surveillance in urinary tract infections. Bioinformatics, 36(3), 769–775. https://doi.org/10.1093/bioinformatics/btz642
Braykov, N. P., Eisenberg, J. N., Grossman, M., Zhang, L., Vasco, K., & Graham, D. W. (2016). Antibiotic resistance in developing countries: A global health crisis. The Lancet Infectious Diseases, 16(9), 1062-1072.
Bush, K., & Bradford, P. A. (2019). Beta-lactamases and antibiotic resistance: Trends and challenges. Clinical Microbiology Reviews, 32(2), e00037-18.
Cassini, A., Högberg, L. D., Plachouras, D., Quattrocchi, A., & Hoxha, A. (2019). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria. The Lancet Infectious Diseases, 19(1), 56-66.
Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance.
Dipa Rani Bhowmik, Bushra Jannat et al. (2021). Defining the concurrent pattern of antimicrobial sensitivity of Typhoidal Salmonella, Journal of Primeasia, 2(1), 1-6, 20216
Drekonja, D. M., Zarmbinski, J., & Crnich, C. J. (2015). Antimicrobial stewardship in long-term care facilities. Infection Control & Hospital Epidemiology, 36(5), 472-476.
Fakruddin, M., Hossain, M. N., & Khan, A. S. M. (2024). Application of MALDI-TOF mass spectrometry for rapid identification of multidrug-resistant uropathogens. Current Microbiology, 81, 51. https://doi.org/10.1007/s00284-024-03566-y
Faruk, O., Hasan, S. E., Jubayer, A., Akter, K., Al Shiam, S. A., Rahman, K., & Ali, M. Y. (2023). Microbial Isolates from Urinary Tract Infection and their Antibiotic Resistance Pattern in Dhaka city of Bangladesh. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 2(3), 76-87.
Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: Epidemiology, mechanisms of infection, and treatment options.
Friedman, N. D., Kaye, K. S., Stout, J. E., McGarry, S. A., Trivette, S. L., & Briggs, J. P. (2017). Healthcare-associated urinary tract infections and antibiotic resistance. Emerging Infectious Diseases, 23(5), 876-885.
Golam Md. Sarwar, Maruf Abony et al. (2021). Antibiotic Sensitivity Pattern of Staphylococcus aureus Isolated from Various Dry Foods, Journal of Primeasia, 2(1), 1-6, 20213
Gopinath Ramalingam, Gowsalya Saminathan et al. (2021). Evaluation of the Antimycobacterial efficacy of Silver, Gold and Bimetallic Nanoparticles synthesized using Indian medicinal plants, Journal of Primeasia, 2(1), 1-2, 20218
Halder, S., Rahman, M. M., & Hossain, M. I. (2024). Impact of antimicrobial stewardship programs on the treatment outcomes of urinary tract infections. BMC Infectious Diseases, 24, 123. https://doi.org/10.1186/s12879-024-08451-z
Haq, E., Hossain, M. B., et al. (2022). Quantity estimation of lubricating oil in circular knitting machine. Journal of Primeasia, 3(1), 1-5. https://doi.org/30031
Hasman, H., Clausen, P. T., Kaya, H., Hansen, F., & Knudsen, J. D. (2014). Rapid whole-genome sequencing for detection of antibiotic resistance in urinary pathogens. The Journal of Clinical Microbiology, 52(9), 3146-3152.
Hassan, K., Ferdaus, J., et al. (2022). Spirituality in hospitality services: An assessment of halal tourism practices. Journal of Primeasia, 3(1), 1-6. https://doi.org/30035
Hassan, M. S., Al-Nazawi, M., & Farooq, S. (2024). Engineered probiotics and microbiome modulation for urinary tract infection management. Applied Microbiology and Biotechnology, 108(2), 411–420. https://doi.org/10.1007/s00253-024-12803-6
Hassan, S., Afrin, S., et al. (2022). A wavelet-based approach to rapidly identify drug-addicted individuals using voice signal analysis. Journal of Primeasia, 3(1), 1-6. https://doi.org/30036
Hilt, E. E., McKinley, K., Pearce, M. M., Rosenfeld, A. B., Zilliox, M. J., Mueller, E. R., Brubaker, L., Gai, X., Wolfe, A. J., & Schreckenberger, P. C. (2014). Urine is not sterile: Use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. Journal of Clinical Microbiology, 52(3), 871–876. https://doi.org/10.1128/JCM.02876-13
Hilt, E. E., McKinley, K., Pearce, M. M., Rosenfeld, A. B., Zilliox, M. J., & Mueller, E. R. (2014). The urinary microbiome: A new frontier in urinary tract infection research. Nature Reviews Urology, 11(12), 639-650.
Hossain, M. B., Shravan, A. S., et al. (2022). Effect of scouring & bleaching (single bath & double bath) on jute fiber with the variation of concentration, M:L ratio & time and their comparison. Journal of Primeasia, 3(1), 1-5. https://doi.org/30032
Hossain, M. M., & Islam, M. S. (2022). Policy recommendations and guidelines on sustainable tourism development in Bangladesh – A systematic review. Journal of Primeasia, 3(1), 1-4. https://doi.org/30034
Hover, B. M., Kim, S. H., Katz, M., Charlop-Powers, Z., & Owen, J. G. (2018). Discovery of new antibiotics through genome mining. Nature Microbiology, 3(4), 415-427.
Hussaini I.M., Suleiman A.B. et al. (2021). Molecular Detection and Characterization of Carbapenemases Among Carbapenem-Resistant Escherichia Coli And Klebsiella Pneumoniae Isolated from Urine, Journal of Primeasia, 2(1), 1-6, 20212
Huttner, A., Gambillara, V., & Hatz, C. (2017). Vaccines against urinary tract infections: An update. Clinical Infectious Diseases, 65(6), 791-799.
Islam, T., Islam, M. N., et al. (2022). Toxic leadership and employee misconduct of hotel and tourism institution: A frontline perspective. Journal of Primeasia, 3(1), 1-6. https://doi.org/30038
Khan, N., & Uddin, S. M. (2024). Role of biomarkers in the de-escalation of antibiotics in urinary tract infections. Biomarkers in Medicine, 18(1), 35–42.
Ling, L. L., Schneider, T., Peoples, A. J., Spoering, A. L., Engels, I., & Conlon, B. P. (2015). A new antibiotic kills pathogens without detectable resistance. Nature, 517(7535), 455-459.
Mahlapuu, M., Håkansson, J., Ringstad, L., & Björn, C. (2016). Antimicrobial peptides: An emerging category of therapeutic agents. Frontiers in Cellular and Infection Microbiology, 6, 194.
Neugent, M. L., Hulyalkar, N. V., Nguyen, V. H., & Zimmern, P. E. (2020). Advances in the microbiome and urinary tract infection research. Nature Reviews Urology, 17(2), 81-92.
Neugent, M. L., Hulyalkar, N. V., Nguyen, V. H., Zimmern, P. E., & De Nisco, N. J. (2020). Advances in understanding the human urinary microbiome and its potential role in urinary tract infection. mBio, 11(2), e00218-20. https://doi.org/10.1128/mBio.00218-20
Rana, M. M., Haque, M. E., & Sultana, T. (2024). Knowledge and practice of antibiotic use among general practitioners in Bangladesh. BMC Primary Care, 25, Article 78. https://doi.org/10.1186/s12875-024-02132-y
Rasheed, S., Nazneen, F., et al. (2022). The Kamranga Mosque: Architectural synthesis and heritage significance in colonial Dhaka - Review. Journal of Primeasia, 3(1), 1-5. https://doi.org/30037
Salam, M. A., Uddin, M. N., & Rahman, M. A. (2024). Policy approaches to antimicrobial use in agriculture: A systematic review. One Health, 18, 100512. https://doi.org/10.1016/j.onehlt.2024.100512
Schuts, E. C., Hulscher, M. E., & Mouton, J. W. (2016). Current evidence on hospital antimicrobial stewardship objectives. The Lancet Infectious Diseases, 16(7), 847-856.
Schuts, E. C., Hulscher, M. E., Mouton, J. W., Verduin, C. M., Stuart, J. W., Overdiek, H. W., ... & Prins, J. M. (2016). Current evidence on hospital antimicrobial stewardship objectives: A systematic review and meta-analysis. The Lancet Infectious Diseases, 16(7), 847–856. https://doi.org/10.1016/S1473-3099(16)00065-7
Shawon, D. S., Billa, A. B., et al. (2022). Detection of MDMA using rectangular microstrip patch antenna. Journal of Primeasia, 3(1), 1-4. https://doi.org/30033
Singhal, N., Kumar, M., & Kanaujia, P. K. (2015). MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Frontiers in Microbiology, 6, 791.
Suvamoy Datta, Maruf Abony et al. (2021). Management of COVID-19 Crisis: Bangladesh Perspectives, Journal of Primeasia, 2(1), 1-5, 20211
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., & Monnet, D. L. (2018). Discovery, research, and development of new antibiotics: The WHO priority pathogens list. The Lancet Infectious Diseases, 18(3), 318-327.
Tufael and, Atikur Rahman Sunny (2021). Artificial Intelligence in Healthcare: A Review of Diagnostic Applications and Impact on Clinical Practice, Journal of Primeasia, 2(1), 1-5, 9816
Tufael, & Rahman Sunnay, A. (2022). Transforming healthcare with artificial intelligence: Innovations, applications, and future challenges. Journal of Primeasia, 3(1), 1-6. https://doi.org/9802
Tufael, & Rahman Sunny, A. (2022). Enhancing patient outcomes through innovative hospital management practices. Journal of Primeasia, 3(1), 1-8. https://doi.org/9820
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., & Levin, S. A. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649-5654.
Wellington, E. M. H., Boxall, A. B. A., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., ... & Williams, A. P. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases, 13(2), 155-165.
Wolffs, P. F., Norling, B., & Husmark, U. (2016). Rapid screening for antimicrobial resistance genes in urinary tract pathogens using multiplex PCR. Journal of Clinical Microbiology, 54(10), 2552-2558.
World Health Organization. (2017). Global action plan on antimicrobial resistance. WHO Report.
World Health Organization. (2019). Global antimicrobial resistance surveillance system (GLASS) report. WHO Report.
Wright, G. D. (2019). Unlocking the potential of natural products in antibiotic discovery. Nature Reviews Microbiology, 17(2), 115-128.
Xavier, B. B., Lammens, C., Ruhal, R., Kumar-Singh, S., Butaye, P., Goossens, H., & Malhotra-Kumar, S. (2016). Identification of a novel plasmid-mediated colistin resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance, 21(27), 30280.
Xu, H., Li, H., Wang, Y., Zhang, X., Chen, L., & Li, J. (2017). Genetic basis of antibiotic resistance in urinary tract pathogens and implications for treatment strategies. BMC Microbiology, 17(1), 44.
Yan, J. J., Wu, J. J., Tsai, S. H., Chuang, C. L., Yang, Y. C., & Lu, C. Y. (2018). Mechanisms of fluoroquinolone resistance in multidrug-resistant Escherichia coli from urinary tract infections. International Journal of Antimicrobial Agents, 52(5), 704-710.
Yang, Q., Zhang, H., Wang, Y., Wang, Y., Zhang, R., & Wang, H. (2019). Global emergence of colistin resistance: A consequence of extensive use in agriculture and healthcare. Clinical Infectious Diseases, 68(8), 1326-1335.
Zhang, L., Kinkelaar, D., Huang, Y., Li, Y., Li, X., & Wang, H. H. (2018). Acquired antibiotic resistance: Are we at a tipping point? Microbial Biotechnology, 11(4), 588-596.
Zhao, Y., Tang, H., Ye, Y., Wang, J., & He, L. (2019). Advances in bacterial genome sequencing for understanding urinary tract infections and antibiotic resistance. Frontiers in Microbiology, 10, 1931.
Zhu, Y. G., Zhao, Y., Li, B., Cox, S., Sun, Q., & Zhang, T. (2017). Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2, 16270.
View Dimensions
View Altmetric
Save
Citation
View
Share