Integrated Approaches to Infectious Disease Control: Antimicrobial Resistance, Enzyme Technologies, and Nanomedicine Applications
Sohel Rana1*
Biosensors and Nanotheranostics 1(1) 1-8 https://doi.org/10.25163/biosensors.1110262
Submitted: 06 September 2022 Revised: 18 November 2022 Published: 22 November 2022
Abstract
The emergence of infectious diseases remains a significant global health challenge, exacerbated by the increasing prevalence of antimicrobial resistance (AMR). Traditional treatment approaches are often insufficient to combat the rapid adaptation of pathogens, necessitating integrated and innovative strategies. Enzyme technologies and nanomedicine applications offer promising solutions to address these challenges. Enzyme-based therapies provide specificity and efficiency in targeting pathogenic microorganisms while minimizing the adverse effects of conventional antimicrobial agents. Concurrently, nanomedicine leverages nanotechnology to enhance drug delivery, improve diagnostic precision, and develop novel antimicrobial agents. The synergy of these approaches holds great potential in reshaping infectious disease control, bridging the gap between conventional and modern therapeutics. This review explores the interplay between antimicrobial resistance, enzyme technologies, and nanomedicine applications, highlighting their roles in creating effective and sustainable infectious disease management strategies. Emphasis is placed on the need for interdisciplinary research, policy development, and global collaboration to ensure the success of these integrated approaches. Through a detailed examination of current studies and future perspectives, this article aims to shed light on the transformative impact of these advancements in controlling infectious diseases worldwide.
Keywords: Antimicrobial resistance (AMR), Enzyme therapy, Nanomedicine, Infectious disease control, Drug delivery.
References
Alcala, A., Ramirez, G., Solis, A., Kim, Y., Tan, K., Luna, O., et al. (2020). Structural and functional characterization of three Type B and C chloramphenicol acetyltransferases from Vibrio species. Protein Science, 29(3), 695–710. https://doi.org/10.1002/pro.3796
Alcala, L., Ruiz-Garbajosa, P., & Cantón, R. (2020). Enzyme-based approaches to combat antibiotic resistance: Mechanisms and potential applications. Clinical Microbiology Reviews, 33(4), e00104-19. https://doi.org/10.1128/CMR.00104-19
Allen, H.K., Donato, J., Wang, H.H., Cloud-Hansen, K.A., Davies, J., & Handelsman, J. (2010). Call of the wild: Antibiotic resistance genes in natural environments. Nat Rev Microbiol, 8, 251–259. https://doi.org/10.1038/nrmicro2312
Altarac, D., Gutch, M., Mueller, J., Ronsheim, M., Tommasi, R., & Perros, M. (2021). Challenges and opportunities in the discovery, development, and commercialization of pathogen-targeted antibiotics. Drug Discov Today, 26, 2084–2089. https://doi.org/10.1016/j.drudis.2021.05.017
Aminov, R. I. (2021). Horizontal gene exchange in environmental microbiota. Frontiers in Microbiology, 12, 653030. https://doi.org/10.3389/fmicb.2021.653030
Andersson, D. I., & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nature Reviews Microbiology, 12(7), 465-478.https://doi.org/10.1038/nrmicro3270
Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Baker, K. S., Dallman, T. J., Field, N., Childs, T., Mitchell, H., Day, M., et al. (2018). Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species. Nature Communications, 9, 1462. https://doi.org/10.1038/s41467-018-03949-8
Baquero, F., Tedim, A. P., & Coque, T. M. (2013). Antibiotic resistance shaping multi-level population biology of bacteria. Frontiers in Microbiology, 4, 15.https://doi.org/10.3389/fmicb.2013.00015
Bhattacharyya, S., Walker, D. M., & Harshey, R. M. (2020). Dead cells release a ‘necrosignal’ that activates antibiotic survival pathways in bacterial swarms. Nature Communications, 11, 1–12. https://doi.org/10.1038/s41467-020-15969-7
Boyd, N.K., Teng, C., & Frei, C.R. (2021). Brief overview of approaches and challenges in new antibiotic development: A focus on drug repurposing. Front Cell Infect Microbiol, 11, 684515. https://doi.org/10.3389/fcimb.2021.684515
Brauner, A., Fridman, O., Gefen, O., & Balaban, N. Q. (2016). Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nature Reviews Microbiology, 14(5), 320–330. https://doi.org/10.1038/nrmicro.2016.34
Bryers, J. D. (2008). Medical biofilms. Biotechnology and Bioengineering, 100(1), 1-18.https://doi.org/10.1002/bit.21838
Butler, M. S., & Cooper, M. A. (2011). Antibiotics in the clinical pipeline in 2011. The Journal of Antibiotics, 64(6), 413-425.https://doi.org/10.1038/ja.2011.44
Candela, T., Marvaud, J. C., Nguyen, T. K., & Lambert, T. (2017). A cfr-like gene cfr(C) conferring linezolid resistance is common in Clostridium difficile. International Journal of Antimicrobial Agents, 50(4), 496–500. https://doi.org/10.1016/j.ijantimicag.2017.04.027
Candela, T., Pédron, T., Le Bouguénec, C., & Waksman, G. (2017). Protein-based therapeutic strategies against bacterial virulence. Current Opinion in Microbiology, 39, 100–105. https://doi.org/10.1016/j.mib.2017.10.006
Cano, V., March, C., Insua, J.L., Aguiló, N., Llobet, E., Moranta, D., et al. (2015). Klebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes. Cell Microbiol, 17, 1537–1560. https://doi.org/10.1111/cmi.12445
Chen, J., & Zhang, Y. (2020). Lysozymes: Hydrolyzing peptidoglycan in the bacterial cell wall. Applied Microbiology and Biotechnology, 104(2), 571-582. https://doi.org/10.1007/s00253-020-10571-8
Chernousova, S., & Epple, M. (2013). Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Chemie International Edition, 52(6), 1636-1653.https://doi.org/10.1002/anie.201205923
Chung, P. Y., & Toh, Y. S. (2014). Anti-biofilm agents: Recent breakthrough against multi-drug resistant Staphylococcus aureus. Pathogens and Disease, 70(3), 231-239.https://doi.org/10.1111/2049-632X.12141
Chung, W., & You, H. (2014). DNases: Disrupting extracellular DNA in biofilm and improving antibiotic efficacy. Biofilm Research, 1(2), 93-103. https://doi.org/10.1016/j.bioflm.2014.05.003
Coleman, S. R., Blimkie, T., Falsafi, R., & Hancock, R. E. W. (2020). Multidrug adaptive resistance of Pseudomonas aeruginosa swarming cells. Antimicrobial Agents and Chemotherapy, 64(3), e01999-19. https://doi.org/10.1128/AAC.01999-19
Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417-433.https://doi.org/10.1128/MMBR.00016-10
De la Fuente-Núñez, C., & Hancock, R. E. (2015). Anti-biofilm peptides: From discovery to applications. Trends in Biotechnology, 33(10), 599-611.
Dong, L., & Zhang, X. (2018). Nanomedicine in infectious disease treatment: New strategies and challenges. Nanotechnology Reviews, 7(6), 587-601.
Eichenberger, E. M., & Thaden, J. T. (2019). Epidemiology and mechanisms of resistance of extensively drug-resistant Gram-negative bacteria. Antibiotics, 8(2), 37. https://doi.org/10.3390/antibiotics8020037
Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, 25-64.https://doi.org/10.4137/PMC.S14459
Fakruddin, M., Prima, M.J., Chowdhury, T., Ferdous, U.T., Afroz, J., & Shishir, M.A.S. (2024). Nature's Tiny Chemists: Microorganisms as Sources of Next-Gen Active Pharmaceutical Ingredients (APIs). Journal of Primeasia, 5(1), 1-9.https://doi.org/10.9928/primeasia.2024.9
Farhadi, R., Saffar, M. J., Monfared, F. T., Larijani, L. V., Kenari, S. A., & Charati, J. Y. (2022). Prevalence, risk factors and molecular analysis of vancomycin-resistant Enterococci colonization in a referral neonatal intensive care unit: A prospective study in northern Iran. Journal of Global Antimicrobial Resistance, 30, 63–68. https://doi.org/10.1016/j.jgar.2022.06.004
Fatima, K.B., Salam, M.T., Biswash, M.A.R., Rana, M.S., Das, S.S., Hossian, M., Bashir, M.S., Sikder, N.F., Shahin, H.R., Ali, R., & Uddin, N. (2024). Assessing the Predictive Accuracy of IL-6, CRP, PCT, and D-Dimer for Mortality in COVID-19 ICU Patients. Journal of Primeasia, 5(1), 1-8. https://doi.org/10.9917/primeasia.2024.8
Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563–575. https://doi.org/10.1038/nrmicro.2016.94
Floss, H. G., & Yu, T. W. (2005). Rifamycin-mode of action, resistance, and biosynthesis. Chemical Reviews, 105(2), 621–632. https://doi.org/10.1021/cr030112j
Franzosa, E. A., et al. (2015). Identifying personal microbiomes using metagenomic codes. Proceedings of the National Academy of Sciences, 112(22), 6278-6283.https://doi.org/10.1073/pnas.1423854112
Gh.AL-Abbasy, E., & Jalal, A.G. (2024). Lactoferrin Supplementation Induced Awassi Lambs Production with High Immunity and Iron Levels. Journal of Primeasia, 5(1), 1-7. https://doi.org/10.25163/primeasia.519765
Ghosh, P. R., Afnan, M., et al. (2023). Neurocybernetic assistive technologies to enhance robotic wheelchair navigation. Journal of Primeasia, 4(1), 1-6. https://doi.org/10.25163/primeasia.4140044
Ghosh, P. R., Halder, S., et al. (2024). Impact of generative AI models on neurocybernetics for enhancing brain-computer interface adaptability in motor disabilities. Journal of Primeasia, 4(1), 1-6.https://doi.org/10.25163/primeasia.4140047
Ghosh, P. R., Moin, M. G. H., et al. (2023). Surgical robotics enhanced by 3D reconstruction for minimally invasive bicuspid aortic valve replacement surgery. Journal of Primeasia, 4(1), 1-6. https://doi.org/10.25163/primeasia.4140043
Goel, N., Fatima, S. W., Kumar, S., Sinha, R., & Khare, S. K. (2021). Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. Biotechnology Reports, 30, e00613. https://doi.org/10.1016/j.btre.2021.e00613
Guerra, M. E. S., Destro, G., Vieira, B., Lima, A. S., Ferraz, L. F. C., Hakansson, A. P., et al. (2022). Klebsiella pneumoniae biofilms and their role in disease pathogenesis. Frontiers in Cellular and Infection Microbiology, 12, 877995. https://doi.org/10.3389/fcimb.2022.877995
Hegstad, K., Mikalsen, T., Coque, T. M., Werner, G., & Sundsfjord, A. (2010). Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clinical Microbiology and Infection, 16(6), 541–554. https://doi.org/10.1111/j.1469-0691.2010.03226.x
Ioannou, P., Baliou, S., & Samonis, G. (2024). Nanotechnology in the Diagnosis and Treatment of Antibiotic-Resistant Infections. Antibiotics, 13(2), 121. https://doi.org/10.3390/antibiotics13020121
Jani, K., Srivastava, V., Sharma, P., Vir, A., & Sharma, A. (2021). Easy access to antibiotics; spread of antimicrobial resistance and implementation of one health approach in India. Journal of Epidemiology and Global Health, 11(4), 444–452. https://doi.org/10.2991/jegh.k.210823.001
Kållberg, C., Salvesen Blix, H., & Laxminarayan, R. (2019). Challenges in antibiotic R&D calling for a global strategy considering both short- and long-term solutions. ACS Infect Dis, 5, 1265–1268. https://doi.org/10.1021/acsinfecdis.9b00147
Kang, M., Yang, J., Kim, S., Park, J., Kim, M., & Park, W. (2022). Occurrence of antibiotic resistance genes and multidrug-resistant bacteria during wastewater treatment processes. Sci Total Environ, 811, 152331. https://doi.org/10.1016/j.scitotenv.2021.152331
Karygianni, L., Ren, Z., Koo, H., & Thurnheer, T. (2020). Biofilm matrixome: Extracellular components in structured microbial communities. Trends in Microbiology, 28(8), 668–681. https://doi.org/10.1016/j.tim.2020.02.004
Kishk, R. M., Abd El-Ghany, S. M., & El-Mohandes, M. A. (2021). Antibiotic resistance of Staphylococcus aureus isolated from dry food products. Journal of Food Safety, 41(4), e12912. https://doi.org/10.1111/jfs.12912
Kishk, R., Soliman, N., Nemr, N., Eldesouki, R., Mahrous, N., Gobouri, A., et al. (2021). Prevalence of aminoglycoside resistance and aminoglycoside modifying enzymes in Acinetobacter baumannii among intensive care unit patients, Ismailia, Egypt. Infection and Drug Resistance, 14, 143–150. https://doi.org/10.2147/IDR.S283349
Krell, T., & Matilla, M.A. (2022). Antimicrobial resistance: Progress and challenges in antibiotic discovery and anti-infective therapy. Microb Biotechnol, 15, 70–78. https://doi.org/10.1111/1751-7915.13851
Lamberte, L.E., & van Schaik, W. (2022). Antibiotic resistance in the commensal human gut microbiota. Curr Opin Microbiol, 68, 102150. https://doi.org/10.1016/j.mib.2022.102150
Laxminarayan, R., et al. (2013). Antibiotic resistance: The need for global solutions. The Lancet Infectious Diseases, 13(12), 1057-1098.https://doi.org/10.1016/S1473-3099(13)70318-9
Liu, J., Gefen, O., Ronin, I., Bar-Meir, M., & Balaban, N. Q. (2020). Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science, 367(6474), 200–204. https://doi.org/10.1126/science.aaz5487
Liu, Y., & Zhao, X. (2016). Role of reactive oxygen species in antibiotic resistance. Antimicrobial Agents and Chemotherapy, 60(6), 3203-3211.
Liu, Y., Jia, Y., Yang, K., & Wang, Z. (2020). Heterogeneous strategies to eliminate intracellular bacterial pathogens. Frontiers in Microbiology, 11, 563. https://doi.org/10.3389/fmicb.2020.00563
Lopatkin, A. J., Bening, S. C., Manson, A. L., Stokes, J. M., Kohanski, M. A., Badran, A. H., et al. (2021). Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science, 371(6526), eaba0862. https://doi.org/10.1126/science.aba0862
Mahoney, A. R., Safaee, M. M., Wuest, W. M., & Furst, A. L. (2021). The silent pandemic: Emergent antibiotic resistances following the global response to SARS-CoV-2. iScience, 24(3), 102304. https://doi.org/10.1016/j.isci.2021.102304
Makabenta, J.M.V., Nabawy, A., Li, C.H., Schmidt-Malan, S., Patel, R., & Rotello, V.M. (2021). Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol, 19, 23–36. https://doi.org/10.1038/s41564-020-00781-7
Malik, M., & Drlica, K. (2010). Control of infectious diseases by inhibiting bacterial persistence. Nature Reviews Microbiology, 8(12), 765-772.
Morar, M., & Wright, G. D. (2010). The genomic enzymology of antibiotic resistance. Annual Review of Genetics, 44, 25–51. https://doi.org/10.1146/annurev-genet-102209-163503
Ndayishimiye, J., Kumeria, T., Popat, A., Falconer, J.R., & Blaskovich, M.A.T. (2022). Nanomaterials: The new antimicrobial magic bullet. ACS Infect Dis, 8, 693–712. https://doi.org/10.1021/acsinfecdis.2c00072
Nicoloff, H., Hjort, K., Levin, B. R., & Andersson, D. I. (2019). The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nature Microbiology, 4(3), 504–514. https://doi.org/10.1038/s41564-018-0342-0
O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Resistance. https://amr-review.org/
Pal, C., et al. (2015). Metal resistance and its association with antibiotic resistance. Advances in Microbial Physiology, 65, 261-313.https://doi.org/10.1016/bs.ampbs.2017.02.001PMid:28528649
Peterson, E., & Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9, 2928. https://doi.org/10.3389/fmicb.2018.02928
Plackett, B. (2020). Why big pharma has abandoned antibiotics. Nature, 586, S50–S52. https://doi.org/10.1038/d41586-020-02834-2
Poole, K. (2012). Bacterial stress responses as determinants of antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 67(9), 2069-2089.https://doi.org/10.1093/jac/dks196
Redgrave, L. S., Sutton, S. B., Webber, M. A., & Piddock, L. J. V. (2014). Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends in Microbiology, 22(8), 438–445. https://doi.org/10.1016/j.tim.2014.04.007
Rodríguez-Martínez, J. M., Pascual, A., & Martínez-Martínez, L. (2010). Plasmid-mediated quinolone resistance: An update. Journal of Infection and Chemotherapy, 16(3), 149–182. https://doi.org/10.1007/s10156-010-0065-2
Rosas, N. C., & Lithgow, T. (2022). Targeting bacterial outer-membrane remodelling to impact antimicrobial drug resistance. Trends in Microbiology, 30(6), 544–552. https://doi.org/10.1016/j.tim.2022.01.009
Shinu, P., Mouslem, A.K.A., Nair, A.B., Venugopala, K.N., Attimarad, M., Singh, V.A., et al. (2022). Progress report: Antimicrobial drug discovery in the resistance era. Pharmaceuticals (Basel), 15(4), 413. https://doi.org/10.3390/ph15040413
Singh, R., Sreedharan, S. M., & Singh, S. P. (2014). Mechanisms for antibacterial activity of nanoparticles. In The Role of Nanotechnology in Combating Multi-Drug Resistant Bacteria (Fig. 2). ResearchGate. https://www.researchgate.net/figure/Mechanisms-for-antibacterial-activity-of-nanoparticles_fig2_261836341
Stalder, T., Rogers, L. M., Renfrow, C., Yano, H., Smith, Z., & Top, E. M. (2017). Emerging patterns of plasmid-host coevolution that stabilize antibiotic resistance. Scientific Reports, 7, 1–10. https://doi.org/10.1038/s41598-017-04989-1
Sulaiman, J. E., & Lam, H. (2021). Evolution of bacterial tolerance under antibiotic treatment and its implications on the development of resistance. Frontiers in Microbiology, 12, 617412. https://doi.org/10.3389/fmicb.2021.617412
Sun, F., et al. (2013). Enzymatic degradation of bacterial biofilm components. Applied Microbiology and Biotechnology, 97(20), 8411-8425.https://doi.org/10.1007/s00253-013-5110-8
Sun, J., Wang, L., Zhang, S., & Liu, F. (2013). Protease: Degrading bacterial biofilm by breaking down extracellular polymeric substances. Journal of Antimicrobial Chemotherapy, 68(3), 621-627. https://doi.org/10.1093/jac/dks456
Vanrompay, D., Nguyen, T.L.A., Cutler, S.J., & Butaye, P. (2018). Antimicrobial resistance in Chlamydiales, Rickettsia, Coxiella, and other intracellular pathogens. Microbiol Spectr, 6(2), 485–500. https://doi.org/10.1128/microbiolspec.ARBA-0001-2018
Wand, M. E., Bock, L. J., Bonney, L. C., & Sutton, J. M. (2022). Mechanisms of carbapenem resistance in clinically relevant Gram-negative bacteria. FEMS Microbiology Reviews, 46(1), fuab051. https://doi.org/10.1093/femsre/fuab051
Westblade, L. J., Errington, J., & Dorr, T. (2020). Antibiotic tolerance. PLoS Pathogens, 16(10), e1008892. https://doi.org/10.1371/journal.ppat.1008892
Worley, J. N., Javkar, K., Hoffmann, M., Hysell, K., Garcia-Williams, A., Tagg, K., et al. (2021). Genomic drivers of multidrug-resistant Shigella affecting vulnerable patient populations in the United States and abroad. mBio, 12(1), e03188-20. https://doi.org/10.1128/mBio.03188-20
Wright, G. D. (2005). Beta-lactamases: Modifying or deactivating beta-lactam antibiotics. Annual Review of Microbiology, 59, 291-315. https://doi.org/10.1146/annurev.micro.59.030804.121443
Yan, J., & Bassler, B. L. (2019). Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms. Cell Host & Microbe, 26(1), 15–21. https://doi.org/10.1016/j.chom.2019.06.002
Zhang, L., et al. (2010). Development of nanoparticles for antimicrobial drug delivery. Current Medicinal Chemistry, 17(6), 585-594.https://doi.org/10.2174/092986710790416290
Zou, J., & Shankar, N. (2016). The opportunistic pathogen Enterococcus faecalis resists phagosome acidification and autophagy to promote intracellular survival in macrophages. Cell Microbiol, 18, 831–843. https://doi.org/10.1111/cmi.12556
View Dimensions
View Altmetric
Save
Citation
View
Share