Significance of Artificial intelligence in clinical and genomic diagnostics
Md Habibur Rahman1, Md Abdur Rahman Biswash2, Md Abu Bakar Siddique3, Md Mostafizur Rahman3, Moushumi Afroza Mou3, Asim Debnath4, Md Fatin2
Journal of Precision Biosciences 7(1) 1-14 https://doi.org/10.25163/biosciences.7110149
Submitted: 20 October 2024 Revised: 09 January 2025 Published: 10 January 2025
Abstract
AI stands for artificial intelligence, the computer systems emulating human intelligence to complete difficult tasks like interpreting data. The recent advancements in the field of AI in general, particularly the development of deep learning algorithms and hardware development in the form of GPU, have now made it possible to apply it in medical diagnostics. Artificial Intelligence frameworks are adept in treatment of vast, complex data and thus are an efficient tool for clinical assessments. AI is already transforming image-based diagnostics, electronic health records (EHRs) and clinical genomics, as we review here. We summarize AI’s ability to work with problem classes like computer vision, time series analysis, and natural language processing, each of which corresponds to specific diagnostic tasks. Some novel approaches are presented in clinical genomics such as in the areas of variant calling, genome annotation and phenotype to genotype mapping. Deep learning’s capacity to extract useful signals from genomic and phenotypic data with minimal human guidance is accelerating precision medicine. Convolutional and recurrent neural networks have been shown to outperform all other methods for genomic data interpretation. These tools do have limitations, including dependence on large, high quality training datasets as well as robust phenotype data. Here we discuss how advanced biobank projects are a path towards that future even if AI has not yet fully delivered on its promise to enable complex human phenotype prediction. Interpretability, bias mitigation and solving barriers to data collection are crucial elements for AI to thrive within the context of personalized medicine. The constant growth of AI has the potential to completely change genetic studies as well as clinical diagnostics.
Keywords: Artificial Intelligence (AI), Clinical Diagnostics, Genomics, Clinical Applications, Data Interpretation, Deep Learning.
References
Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature biotechnology, 33(8), 831-838.
Asch, F. M., Abraham, T., Jankowski, M., Cleve, J., Adams, M., Romano, N., Polivert, N., Hong, H., & Lang, R. (2019). Accuracy and reproducibility of a novel artificial intelligence deep learning-based algorithm for automated calculation of ejection fraction in echocardiography. Journal of the American College of Cardiology, 73(9), 1447. https://doi.org/10.1016/s0735-1097(19)32053-4
Attia, Z. I., Kapa, S., Lopez-Jimenez, F., McKie, P. M., Ladewig, D. J., Satam, G., Pellikka, P. A., Enriquez-Sarano, M., Noseworthy, P. A., Munger, T. M., Asirvatham, S. J., Scott, C. G., Carter, R. E., & Friedman, P. A. (2018). Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nature Medicine, 25(1), 70–74. https://doi.org/10.1038/s41591-018-0240-2
Baeza-Centurion, P., Miñana, B., Schmiedel, J. M., Valcárcel, J., & Lehner, B. (2019). Combinatorial genetics reveals a scaling law for the effects of mutations on splicing. Cell, 176(3), 549-563.
Bastarache, L., Hughey, J. J., Hebbring, S., Marlo, J., Zhao, W., Ho, W. T., Van Driest, S. L., McGregor, T. L., Mosley, J. D., Wells, Q. S., Temple, M., Ramirez, A. H., Carroll, R., Osterman, T., Edwards, T., Ruderfer, D., Edwards, D. R. V., Hamid, R., Cogan, J., . . . Denny, J. C. (2018). Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. Science, 359(6381), 1233–1239. https://doi.org/10.1126/science.aal4043
Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner, A., Kellis, M., Marra, M. A., Beaudet, A. L., Ecker, J. R., Farnham, P. J., Hirst, M., Lander, E. S., Mikkelsen, T. S., & Thomson, J. A. (2010). The NIH Roadmap Epigenomics Mapping Consortium. Nature Biotechnology, 28(10), 1045–1048. https://doi.org/10.1038/nbt1010-1045
Bolukbasi, T., Chang, K., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. https://proceedings.neurips.cc/paper_files/paper/2016/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html
Chatterjee, S., & Ahituv, N. (2017). Gene regulatory elements, major drivers of human disease. Annual Review of Genomics and Human Genetics, 18(1), 45–63. https://doi.org/10.1146/annurev-genom-091416-035537
Chen, I. Y., Szolovits, P., & Ghassemi, M. (2019). Can AI help reduce disparities in general medical and mental health care? The AMA Journal of Ethic, 21(2), E167-179. https://doi.org/10.1001/amajethics.2019.167
Chen, J., Druhl, E., Ramesh, B. P., Houston, T. K., Brandt, C. A., Zulman, D. M., Vimalananda, V. G., Malkani, S., & Yu, H. (2018). A natural language processing system that links medical terms in electronic health record notes to lay definitions: system development using physician reviews. Journal of Medical Internet Research, 20(1), e26. https://doi.org/10.2196/jmir.8669
Clark, M. M., Hildreth, A., Batalov, S., Ding, Y., Chowdhury, S., Watkins, K., Ellsworth, K., Camp, B., Kint, C. I., Yacoubian, C., Farnaes, L., Bainbridge, M. N., Beebe, C., Braun, J. J. A., Bray, M., Carroll, J., Cakici, J. A., Caylor, S. A., Clarke, C., . . . Kingsmore, S. F. (2019). Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. Science Translational Medicine, 11(489). https://doi.org/10.1126/scitranslmed.aat6177
Collobert, R., & Weston, J. (2008, July). A unified architecture for natural language processing: Deep neural networks with multitasks learning. In Proceedings of the 25th international conference on Machine learning (pp. 160-167).
Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D., Moreira, A. L., Razavian, N., & Tsirigos, A. (2018). Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature Medicine, 24(10), 1559–1567. https://doi.org/10.1038/s41591-018-0177-5
DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., Del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., & Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491–498. https://doi.org/10.1038/ng.806
Detecting Intracranial Hemorrhage with Deep Learning. (2018, July 1). IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/8512336
Dias, R., & Torkamani, A. (2019). Artificial intelligence in clinical and genomic diagnostics. Genome Medicine, 11(1). https://doi.org/10.1186/s13073-019-0689-8
Diller, G., Kempny, A., Babu-Narayan, S. V., Henrichs, M., Brida, M., Uebing, A., Lammers, A. E., Baumgartner, H., Li, W., Wort, S. J., Dimopoulos, K., & Gatzoulis, M. A. (2018). Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 10 019 patients. European Heart Journal, 40(13), 1069–1077. https://doi.org/10.1093/eurheartj/ehy915
Dolgin, E. (2019). AI face-scanning app spots signs of rare genetic disorders. Nature. https://doi.org/10.1038/d41586-019-00027-x
Doshi-Velez, F., & Kim, B. (2017, February 28). Towards a rigorous science of interpretable machine learning. arXiv.org. https://arxiv.org/abs/1702.08608
Edwards, E., Salloum, W., Finley, G. P., Fone, J., Cardiff, G., Miller, M., & Suendermann-Oeft, D. (2017). Medical Speech Recognition: Reaching Parity with Humans. In Lecture notes in computer science (pp. 512–524). https://doi.org/10.1007/978-3-319-66429-3_51
Eraslan, G., Avsec, Ž., Gagneur, J., & Theis, F. J. (2019). Deep learning: new computational modelling techniques for genomics. Nature Reviews Genetics, 20(7), 389–403. https://doi.org/10.1038/s41576-019-0122-6
Erikson, G. A., Bodian, D. L., Rueda, M., Molparia, B., Scott, E. R., Scott-Van Zeeland, A. A., ... & Torkamani, A. (2016). Whole-genome sequencing of a healthy aging cohort. Cell, 165(4), 1002-1011.
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639), 115-118.
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2018). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z
Evans, A. J., Bauer, T. W., Bui, M. M., Cornish, T. C., Duncan, H., Glassy, E. F., ... & Pantanowitz, L. (2018). US Food and Drug Administration approval of whole slide imaging for primary diagnosis: a key milestone is reached and new questions are raised. Archives of pathology & laboratory medicine, 142(11), 1383-1387.
FDA approves stroke-detecting AI software. (2018). Nature Biotechnology, 36(4), 290. https://doi.org/10.1038/nbt0418-290
Fraser, K. C., Meltzer, J. A., & Rudzicz, F. (2015). Linguistic features identify Alzheimer’s disease in narrative speech. Journal of Alzheimer S Disease, 49(2), 407–422. https://doi.org/10.3233/jad-150520
Galloway, C. D., Valys, A. V., Shreibati, J. B., Treiman, D. L., Petterson, F. L., Gundotra, V. P., Albert, D. E., Attia, Z. I., Carter, R. E., Asirvatham, S. J., Ackerman, M. J., Noseworthy, P. A., Dillon, J. J., & Friedman, P. A. (2019). Development and validation of a Deep-Learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiology, 4(5), 428. https://doi.org/10.1001/jamacardio.2019.0640
Garrison, E., & Marth, G. (2012, July 17). Haplotype-based variant detection from short-read sequencing. arXiv.org. https://arxiv.org/abs/1207.3907
Gianfrancesco, M. A., Tamang, S., Yazdany, J., & Schmajuk, G. (2018). Potential biases in machine learning algorithms using electronic health record data. JAMA Internal Medicine, 178(11), 1544. https://doi.org/10.1001/jamainternmed.2018.3763
Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. jama, 316(22), 2402-2410.
Gurovich, Y., Hanani, Y., Bar, O., Nadav, G., Fleischer, N., Gelbman, D., Basel-Salmon, L., Krawitz, P. M., Kamphausen, S. B., Zenker, M., Bird, L. M., & Gripp, K. W. (2018). Identifying facial phenotypes of genetic disorders using deep learning. Nature Medicine, 25(1), 60–64. https://doi.org/10.1038/s41591-018-0279-0
Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C., Turakhia, M. P., & Ng, A. Y. (2018). Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine, 25(1), 65–69. https://doi.org/10.1038/s41591-018-0268-3
Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., ... & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine, 29(6), 82-97.
Hsieh, T., Mensah, M. A., Pantel, J. T., Aguilar, D., Bar, O., Bayat, A., Becerra-Solano, L., Bentzen, H. B., Biskup, S., Borisov, O., Braaten, O., Ciaccio, C., Coutelier, M., Cremer, K., Danyel, M., Daschkey, S., Eden, H. D., Devriendt, K., Wilson, S., . . . Krawitz, P. M. (2019). PEDIA: prioritization of exome data by image analysis. Genetics in Medicine, 21(12), 2807–2814. https://doi.org/10.1038/s41436-019-0566-2
Hwang, S., Kim, E., Lee, I., & Marcotte, E. M. (2015). Systematic comparison of variant calling pipelines using gold standard personal exome variants. Scientific Reports, 5(1). https://doi.org/10.1038/srep17875
Inouye, M., Abraham, G., Nelson, C. P., Wood, A. M., Sweeting, M. J., Dudbridge, F., Lai, F. Y., Kaptoge, S., Brozynska, M., Wang, T., Ye, S., Webb, T. R., Rutter, M. K., Tzoulaki, I., Patel, R. S., Loos, R. J., Keavney, B., Hemingway, H., Thompson, J., . . . Samani, N. J. (2018). Genomic risk prediction of coronary artery disease in 480,000 adults. Journal of the American College of Cardiology, 72(16), 1883–1893. https://doi.org/10.1016/j.jacc.2018.07.079
Jaganathan, K., Panagiotopoulou, S. K., McRae, J. F., Darbandi, S. F., Knowles, D., Li, Y. I., ... & Farh, K. K. H. (2019). Predicting splicing from primary sequence with deep learning. Cell, 176(3), 535-548.
Kelley, D. R., Reshef, Y. A., Bileschi, M., Belanger, D., McLean, C. Y., & Snoek, J. (2018). Sequential regulatory activity prediction across chromosomes with convolutional neural networks. Genome Research, 28(5), 739–750. https://doi.org/10.1101/gr.227819.117
Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M., & Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics, 46(3), 310–315. https://doi.org/10.1038/ng.2892
Köhler, S., Carmody, L., Vasilevsky, N., Jacobsen, J. O. B., Danis, D., Gourdine, J., Gargano, M., Harris, N. L., Matentzoglu, N., McMurry, J. A., Osumi-Sutherland, D., Cipriani, V., Balhoff, J. P., Conlin, T., Blau, H., Baynam, G., Palmer, R., Gratian, D., Dawkins, H., . . . Robinson, P. N. (2018). Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Research, 47(D1), D1018–D1027. https://doi.org/10.1093/nar/gky1105
Kohut, K., Limb, S., & Crawford, G. (2019). The changing role of the genetic counsellor in the Genomics era. Current Genetic Medicine Reports, 7(2), 75–84. https://doi.org/10.1007/s40142-019-00163-w
Landrum, M. J., Lee, J. M., Benson, M., Brown, G. R., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Jang, W., Karapetyan, K., Katz, K., Liu, C., Maddipatla, Z., Malheiro, A., McDaniel, K., Ovetsky, M., Riley, G., Zhou, G., . . . Maglott, D. R. (2017). ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Research, 46(D1), D1062–D1067. https://doi.org/10.1093/nar/gkx1153
Le, E., Wang, Y., Huang, Y., Hickman, S., & Gilbert, F. (2019). Artificial intelligence in breast imaging. Clinical Radiology, 74(5), 357–366. https://doi.org/10.1016/j.crad.2019.02.006
Lee, A., Mavaddat, N., Wilcox, A. N., Cunningham, A. P., Carver, T., Hartley, S., De Villiers, C. B., Izquierdo, A., Simard, J., Schmidt, M. K., Walter, F. M., Chatterjee, N., Garcia-Closas, M., Tischkowitz, M., Pharoah, P., Easton, D. F., & Antoniou, A. C. (2019). BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genetics in Medicine, 21(8), 1708–1718. https://doi.org/10.1038/s41436-018-0406-9
Lello, L., Avery, S. G., Tellier, L., Vazquez, A. I., De Los Campos, G., & Hsu, S. D. H. (2018). Accurate genomic prediction of human height. Genetics, 210(2), 477–497. https://doi.org/10.1534/genetics.118.301267
Leung, M. K. K., Xiong, H. Y., Lee, L. J., & Frey, B. J. (2014). Deep learning of the tissue-regulated splicing code. Bioinformatics, 30(12), i121–i129. https://doi.org/10.1093/bioinformatics/btu277
Li, J., Deng, L., Haeb-Umbach, R., & Gong, Y. (2015). Robust automatic speech recognition: a bridge to practical applications.
Li, Z., Huang, J., & Hu, Z. (2019). Screening and diagnosis of chronic pharyngitis based on deep learning. International Journal of Environmental Research and Public Health, 16(10), 1688. https://doi.org/10.3390/ijerph16101688
Liang, H., Tsui, B. Y., Ni, H., Valentim, C. C. S., Baxter, S. L., Liu, G., Cai, W., Kermany, D. S., Sun, X., Chen, J., He, L., Zhu, J., Tian, P., Shao, H., Zheng, L., Hou, R., Hewett, S., Li, G., Liang, P., . . . Xia, H. (2019). Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nature Medicine, 25(3), 433–438. https://doi.org/10.1038/s41591-018-0335-9
Lumaka, A., Cosemans, N., Mampasi, A. L., Mubungu, G., Mvuama, N., Lubala, T., Mbuyi-Musanzayi, S., Breckpot, J., Holvoet, M., De Ravel, T., Van Buggenhout, G., Peeters, H., Donnai, D., Mutesa, L., Verloes, A., Tshilobo, P. L., & Devriendt, K. (2016). Facial dysmorphism is influenced by ethnic background of the patient and of the evaluator. Clinical Genetics, 92(2), 166–171. https://doi.org/10.1111/cge.12948
Maor, E., Sara, J. D., Orbelo, D. M., Lerman, L. O., Levanon, Y., & Lerman, A. (2018). Voice signal characteristics are independently associated with coronary artery disease. Mayo Clinic Proceedings, 93(7), 840–847. https://doi.org/10.1016/j.mayocp.2017.12.025
Marmar, C. R., Brown, A. D., Qian, M., Laska, E., Siegel, C., Li, M., Abu-Amara, D., Tsiartas, A., Richey, C., Smith, J., Knoth, B., & Vergyri, D. (2019). Speech-based markers for posttraumatic stress disorder in US veterans. Depression and Anxiety, 36(7), 607–616. https://doi.org/10.1002/da.22890
Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M., & Daly, M. J. (2019). Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics, 51(4), 584–591. https://doi.org/10.1038/s41588-019-0379-x
Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Scientific reports, 6(1), 1-10.
Mittelstadt, B., Russell, C., & Wachter, S. (2019, January). Explaining explanations in AI. In Proceedings of the conference on fairness, accountability, and transparency (pp. 279-288).
Mobadersany, P., Yousefi, S., Amgad, M., Gutman, D. A., Barnholtz-Sloan, J. S., Vega, J. E. V., Brat, D. J., & Cooper, L. a. D. (2018). Predicting cancer outcomes from histology and genomics using convolutional networks. Proceedings of the National Academy of Sciences, 115(13). https://doi.org/10.1073/pnas.1717139115
Mohr, D. N., Turner, D. W., Pond, G. R., Kamath, J. S., De Vos, C. B., & Carpenter, P. C. (2003). Speech recognition as a transcription aid: A randomized comparison with standard transcription. Journal of the American Medical Informatics Association, 10(1), 85–93. https://doi.org/10.1197/jamia.m1130
Niazi, M. K. K., Parwani, A. V., & Gurcan, M. N. (2019). Digital pathology and artificial intelligence. The lancet oncology, 20(5), e253-e261.
Olah, C., Mordvintsev, A., & Schubert, L. (2017). Feature visualization. Distill, 2(11). https://doi.org/10.23915/distill.00007
Parthasarathy, S., Rozgic, V., Sun, M., & Wang, C. (2019, May). Improving emotion classification through variational inference of latent variables. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 7410-7414). IEEE.
Poplin, R., Chang, P., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J., Nguyen, N., Afshar, P. T., Gross, S. S., Dorfman, L., McLean, C. Y., & DePristo, M. A. (2018). A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 36(10), 983–987. https://doi.org/10.1038/nbt.4235
Poplin, R., Varadarajan, A. V., Blumer, K., Liu, Y., McConnell, M. V., Corrado, G. S., Peng, L., & Webster, D. R. (2018). Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering, 2(3), 158–164. https://doi.org/10.1038/s41551-018-0195-0
Prabhavalkar, R., Rao, K., Sainath, T. N., Li, B., Johnson, L., & Jaitly, N. (2017, August). A Comparison of sequence-to-sequence models for speech recognition. In Interspeech (pp. 939-943).
Quang, D., & Xie, X. (2016). DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Research, 44(11), e107. https://doi.org/10.1093/nar/gkw226
Quang, D., Chen, Y., & Xie, X. (2014). DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics, 31(5), 761–763. https://doi.org/10.1093/bioinformatics/btu703
Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, J., Le, Q., Litsch, K., . . . Dean, J. (2018). Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 1(1). https://doi.org/10.1038/s41746-018-0029-1
Retson, T. A., Besser, A. H., Sall, S., Golden, D., & Hsiao, A. (2019). Machine learning and deep neural networks in thoracic and cardiovascular imaging. Journal of Thoracic Imaging, 34(3), 192–201. https://doi.org/10.1097/rti.0000000000000385
Riesselman, A. J., Ingraham, J. B., & Marks, D. S. (2018). Deep generative models of genetic variation capture the effects of mutations. Nature Methods, 15(10), 816–822. https://doi.org/10.1038/s41592-018-0138-4
Ringeval, F., Schuller, B., Valstar, M., Cummins, N., Cowie, R., Tavabi, L., ... & Pantic, M. (2019, October). AVEC 2019 workshop and challenge: state-of-mind, detecting depression with AI, and cross-cultural affect recognition. In Proceedings of the 9th International on Audio/visual Emotion Challenge and Workshop (pp. 3-12). https://doi.org/10.1145/3347320.3357688
Sankar, P. L., & Parker, L. S. (2016). The Precision Medicine Initiative’s All of Us Research Program: an agenda for research on its ethical, legal, and social issues. Genetics in Medicine, 19(7), 743–750. https://doi.org/10.1038/gim.2016.183
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: Visual explanations from deep networks via Gradient-Based Localization. https://openaccess.thecvf.com/content_iccv_2017/html/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.html
Sirugo, G., Williams, S. M., & Tishkoff, S. A. (2019). The missing diversity in human genetic studies. Cell, 177(1), 26-31.
Soemedi, R., Cygan, K. J., Rhine, C. L., Wang, J., Bulacan, C., Yang, J., Bayrak-Toydemir, P., McDonald, J., & Fairbrother, W. G. (2017). Pathogenic variants that alter protein code often disrupt splicing. Nature Genetics, 49(6), 848–855. https://doi.org/10.1038/ng.3837
Sohail, M., Maier, R. M., Ganna, A., Bloemendal, A., Martin, A. R., Turchin, M. C., Chiang, C. W., Hirschhorn, J., Daly, M. J., Patterson, N., Neale, B., Mathieson, I., Reich, D., & Sunyaev, S. R. (2019). Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. eLife, 8. https://doi.org/10.7554/elife.39702
Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, T., Peakman, T., & Collins, R. (2015). UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Medicine, 12(3), e1001779. https://doi.org/10.1371/journal.pmed.1001779
Sundaram, L., Gao, H., Padigepati, S. R., McRae, J. F., Li, Y., Kosmicki, J. A., Fritzilas, N., Hakenberg, J., Dutta, A., Shon, J., Xu, J., Batzoglou, S., Li, X., & Farh, K. K. (2018). Predicting the clinical impact of human mutation with deep neural networks. Nature Genetics, 50(8), 1161–1170. https://doi.org/10.1038/s41588-018-0167-z
Tang, H., & Thomas, P. D. (2016). Tools for predicting the functional impact of nonsynonymous genetic variation. Genetics, 203(2), 635–647. https://doi.org/10.1534/genetics.116.190033
Telenti, A., Pierce, L. C. T., Biggs, W. H., Di Iulio, J., Wong, E. H. M., Fabani, M. M., Kirkness, E. F., Moustafa, A., Shah, N., Xie, C., Brewerton, S. C., Bulsara, N., Garner, C., Metzker, G., Sandoval, E., Perkins, B. A., Och, F. J., Turpaz, Y., & Venter, J. C. (2016). Deep sequencing of 10,000 human genomes. Proceedings of the National Academy of Sciences, 113(42), 11901–11906. https://doi.org/10.1073/pnas.1613365113
Tison, G. H., Sanchez, J. M., Ballinger, B., Singh, A., Olgin, J. E., Pletcher, M. J., Vittinghoff, E., Lee, E. S., Fan, S. M., Gladstone, R. A., Mikell, C., Sohoni, N., Hsieh, J., & Marcus, G. M. (2018). Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiology, 3(5), 409. https://doi.org/10.1001/jamacardio.2018.0136
Topol, E. J. (2018). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7
Torkamani, A., Andersen, K. G., Steinhubl, S. R., & Topol, E. J. (2017). High-Definition Medicine. Cell, 170(5), 828–843. https://doi.org/10.1016/j.cell.2017.08.007
Torkamani, A., Andersen, K. G., Steinhubl, S. R., & Topol, E. J. (2017). High-definition medicine. Cell, 170(5), 828-843.
Torkamani, A., Wineinger, N. E., & Topol, E. J. (2018). The personal and clinical utility of polygenic risk scores. Nature Reviews Genetics, 19(9), 581–590. https://doi.org/10.1038/s41576-018-0018-x
Trigeorgis, G., Ringeval, F., Brueckner, R., Marchi, E., Nicolaou, M. A., Schuller, B., & Zafeiriou, S. (2016, March). Adieu features? end-to-end speech emotion recognition using a deep convolutional recurrent network. In 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 5200-5204). IEEE.
Van Der Heijden, A. A., Abramoff, M. D., Verbraak, F., Van Hecke, M. V., Liem, A., & Nijpels, G. (2017). Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System. Acta Ophthalmologica, 96(1), 63–68. https://doi.org/10.1111/aos.13613
Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: Addressing ethical challenges. PLoS Medicine, 15(11), e1002689. https://doi.org/10.1371/journal.pmed.1002689
Velazquez, E. R., Parmar, C., Liu, Y., Coroller, T. P., Cruz, G., Stringfield, O., Ye, Z., Makrigiorgos, M., Fennessy, F., Mak, R. H., Gillies, R., Quackenbush, J., & Aerts, H. J. (2017). Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Research, 77(14), 3922–3930. https://doi.org/10.1158/0008-5472.can-17-0122
Wang, J., Cao, H., Zhang, J. Z. H., & Qi, Y. (2018). Computational Protein Design with Deep Learning Neural Networks. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-24760-x
Wick, R. R., Judd, L. M., & Holt, K. E. (2019). Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biology, 20(1). https://doi.org/10.1186/s13059-019-1727-y
Wu, Y. (2016). Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.
Yarnell, C. J., Fu, L., Manuel, D., Tanuseputro, P., Stukel, T., Pinto, R., Scales, D. C., Laupacis, A., & Fowler, R. A. (2017). Association between Immigrant Status and End-of-Life Care in Ontario, Canada. JAMA, 318(15), 1479. https://doi.org/10.1001/jama.2017.14418
Zhou, J., & Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with deep learning–based sequence model. Nature Methods, 12(10), 931–934. https://doi.org/10.1038/nmeth.3547
Zhou, J., Park, C. Y., Theesfeld, C. L., Wong, A. K., Yuan, Y., Scheckel, C., Fak, J. J., Funk, J., Yao, K., Tajima, Y., Packer, A., Darnell, R. B., & Troyanskaya, O. G. (2019). Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nature Genetics, 51(6), 973–980. https://doi.org/10.1038/s41588-019-0420-0
Zhou, J., Theesfeld, C. L., Yao, K., Chen, K. M., Wong, A. K., & Troyanskaya, O. G. (2018). Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nature Genetics, 50(8), 1171–1179. https://doi.org/10.1038/s41588-018-0160-6
Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., & Telenti, A. (2018). A primer on deep learning in genomics. Nature Genetics, 51(1), 12–18. https://doi.org/10.1038/s41588-018-0295-5
View Dimensions
View Altmetric
Save
Citation
View
Share