Innovations in Hepatocellular Carcinoma Therapy: How Precision Medicine and Bioengineering are Reshaping Cancer Care
Mst. Shahana Akter1*
Journal of Precision Biosciences 4(1) 1-8 https://doi.org/10.25163/biosciences.4110254
Submitted: 12 April 2022 Revised: 15 June 2022 Published: 18 June 2022
Abstract
Hepatocellular carcinoma (HCC), the most common form of liver cancer, remains a significant global health challenge, with high mortality rates and limited treatment options in advanced stages. Traditional therapies, including surgical resection, liver transplantation, and systemic chemotherapy, have demonstrated limited efficacy, particularly in patients with underlying liver diseases such as cirrhosis or hepatitis B and C infections. However, the landscape of HCC treatment is rapidly evolving due to advancements in precision medicine and bioengineering. Precision medicine leverages genomic, transcriptomic, and proteomic profiling to tailor therapies to the specific molecular characteristics of a patient’s tumor, improving treatment outcomes. Innovations in targeted therapies, including tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors, have provided more effective and less toxic alternatives to conventional chemotherapy.Bioengineering has further revolutionized HCC management through advancements in drug delivery systems, including nanotechnology-based carriers that enhance drug efficacy while minimizing systemic toxicity. The development of 3D bioprinted liver models have enabled personalized drug testing, improving treatment selection for individual patients. Additionally, novel interventional approaches such as radiofrequency ablation (RFA) and transarterial chemoembolization (TACE) have been enhanced through image-guided precision techniques. Recent breakthroughs in CRISPR-based gene editing and adoptive cell therapy, such as CAR-T cells engineered for HCC, are reshaping the future of oncologic therapy. These innovations hold great promise in overcoming therapeutic resistance and enhancing survival rates in HCC patients. Despite these advancements, challenges remain, including the need for better biomarkers to predict treatment response, the high cost of novel therapies, and the ethical considerations surrounding genetic interventions. As research progresses, integrating artificial intelligence (AI) into treatment decision-making and optimizing personalized therapeutic regimens will be critical. This review explores how precision medicine and bioengineering are transforming HCC treatment, focusing on novel targeted therapies, advanced drug delivery systems, interventional oncology, and gene-based therapies. The integration of these cutting-edge strategies offers hope for improving prognosis and quality of life for HCC patients, marking a new era in liver cancer management.
Keywords: Hepatocellular carcinoma, precision medicine, bioengineering, targeted therapy, gene therapy, nanomedicine.
References
Abou-Alfa, G. K., Meyer, T., Cheng, A. L., El-Khoueiry, A. B., Rimassa, L., Ryoo, B. Y., et al. (2018). Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. New England Journal of Medicine, 379(1), 54–63. https://doi.org/10.1056/NEJMoa1717002
Ahn, J. C., Qureshi, T. A., Singal, A. G., Li, D., & Yang, J. D. (2021). Deep learning in hepatocellular carcinoma: Current status and future perspectives. World Journal of Hepatology, 13(12), 2039–2051. https://doi.org/10.4254/wjh.v13.i12.2039
Almela, T., Al-Sahaf, S., Brook, I. M., Khoshroo, K., Rasoulianboroujeni, M., Fahimipour, F., et al. (2018). 3D printed tissue engineered model for bone invasion of oral cancer. Tissue and Cell, 52, 71–77. https://doi.org/10.1016/j.tice.2018.03.009
Alotaibi, A. M., Alanazi, S. S., Hamad, R. H. A., Alotaibai, A. M., Tareq Salem Alsewar, Alanazi, S. S., Al-Anzi, B. T. A., Alahmad, A. I. (2020). The essential role of emergency medicine pharmacists in enhancing care and patient outcomes in emergency departments. Journal of Primeasia, 1.3(1), 1-7. https://doi.org/10074
Al-Salama, Z. T., Syed, Y. Y., & Scott, L. J. (2019). Lenvatinib: A review in hepatocellular carcinoma. Drugs, 79(6), 665–674. https://doi.org/10.1007/s40265-019-01116-x
Augustine, R., Kalva, S. N., Ahmad, R., Zahid, A. A., Hasan, S., Nayeem, A., et al. (2021). 3D Bioprinted cancer models: Revolutionizing personalized cancer therapy. Translational Oncology, 14(4), 101015. https://doi.org/10.1016/j.tranon.2021.101015
Baidaa Khader Abdullah, Yassien Hussain Owaied Al-juboory et al. (2024). Physical and Chemical Analysis of Water Quality at Al-Dur Water Treatment Plant. Journal of Primeasia, 5(1), 1-9. https://doi.org/10.9766
Benson, A. B., D’Angelica, M. I., Abbott, D. E., Anaya, D. A., Anders, R., Are, C., et al. (2021). Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network, 19(5), 541–565. https://doi.org/10.6004/jnccn.2021.0022
Bobo, D., Robinson, K. J., Islam, M. A., Thistle, S. E., & Gray, W. D. (2016). Nanoparticle-based therapeutics: An overview of their pharmacokinetics and biodistribution. Molecular Pharmaceutics, 13(10), 2982-3000. https://doi.org/10.1021/mp500540c
Boyault, S., Rickman, D. S., de Reynies, A., Balabaud, C., Rebouissou, S., Jeannot, E., et al. (2007). Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology, 45(1), 42–52. https://doi.org/10.1002/hep.21467
Bresnahan, E., Ramadori, P., Heikenwalder, M., Zender, L., & Lujambio, A. (2020). Novel patient-derived preclinical models of liver cancer. Journal of Hepatology, 72(2), 239–249. https://doi.org/10.1016/j.jhep.2019.09.028
Broutier, L., Mastrogiovanni, G., Verstegen, M. M., Francies, H. E., Gavarro, L. M., Bradshaw, C. R., et al. (2017). Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nature Medicine, 23(12), 1424–1435. https://doi.org/10.1038/nm.4438
Brown, Z. J., Heinrich, B., & Greten, T. F. (2018). Mouse models of hepatocellular carcinoma: An overview and highlights for immunotherapy research. Nature Reviews Gastroenterology & Hepatology, 15(9), 536–554. https://doi.org/10.1038/s41575-018-0033-6
Bruix, J., et al. (2017). Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment. The Lancet, 389(10064), 56-66.
Bruix, J., Sherman, M., & Llovet, J. M. (2012). Hepatocellular carcinoma: EASL clinical practice guidelines. Journal of Hepatology, 56(4), 908-943. https://doi.org/10.1016/j.jhep.2011.12.001
Chan, S. L., et al. (2022). Immunotherapy for hepatocellular carcinoma: Current standards and future directions. Liver Cancer, 11(2), 119-136.
Chau, S. H., O'Callaghan, C. A., & Dufour, A. (2017). Liposomal drug delivery for cancer therapy: Advancements and challenges. Biomaterials Science, 5(8), 1374-1391. https://doi.org/10.1039/C7BM00215A
Chen, H., Zhang, L., & Li, Z. (2020). Polymeric micelles in drug delivery and cancer therapy. International Journal of Nanomedicine, 15, 1475-1486. https://doi.org/10.2147/IJN.S275408
Chen, J., et al. (2021). The role of the tumor microenvironment in hepatocellular carcinoma progression and resistance to therapy. Frontiers in Oncology, 11, 674016.
Cheng, A. L., et al. (2020). IMbrave150: Atezolizumab plus bevacizumab versus sorafenib for unresectable hepatocellular carcinoma. The Lancet, 395(10223), 67-76.
Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372(9), 793-795. https://doi.org/10.1056/NEJMp1500523
Craig, S. L., Ruan, M., & Anderson, D. L. (2020). Nanoparticle delivery to tumors via the EPR effect: The challenge of targeting the tumor microenvironment. Nature Reviews Drug Discovery, 19(5), 263-279. https://doi.org/10.1038/s41573-019-00104-x
Dekker, A., Kubben, P., & Dumontier, M. (2023). Radiological artificial intelligence: Predicting personalized immunotherapy outcomes in lung cancer. ResearchGate. https://www.researchgate.net/publication/375823485_Radiological_artificial_intelligence_-_predicting_personalized_immunotherapy_outcomes_in_lung_cancer
Dewan Shahriar Shawon, Abdul Bakir Billa, et al. (2022). Detection of MDMA using Rectangular Microstrip Patch Antenna. Journal of Primeasia, 3(1), 1-4, 30033.
Dong, Z., Zhang, X., & Li, J. (2022). Targeted nanoparticle-based drug delivery in hepatocellular carcinoma. Nanomedicine, 17(1), 1-12. https://doi.org/10.1016/j.nano.2022.100102
El Andaloussi, S., Mäger, I., & Breakefield, X. O. (2013). Exosome-based therapies in cancer: Insights into exosome-mediated drug delivery. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1836(1), 29-41. https://doi.org/10.1016/j.bbcan.2012.11.003
El-Khoueiry, A. B., et al. (2017). Nivolumab in patients with advanced hepatocellular carcinoma. Journal of Clinical Oncology, 35(23), 1935-1944.
Emad Gh.AL-Abbasy, & Adnan Gh. Jalal. (2024). Lactoferrin Supplementation Induced Awassi Lambs Production with High Immunity and Iron Levels. Journal of Primeasia, 5(1), 1-7. https://doi.org/10.9765
Emdadul Haq, Md. Billal Hossain, et al. (2022). Quantity Estimation of Lubricating Oil in Circular Knitting Machine. Journal of Primeasia, 3(1), 1-5, 30031.
Fan, Y., Wang, S., & Chen, X. (2019). Bioengineering nanoparticles for cancer treatment. Frontiers in Pharmacology, 10, 1314. https://doi.org/10.3389/fphar.2019.01314
Fawad Khan, Bahar Uddin et al. (2024). Analyzing the Impact of Risk Factors on the Incidence and Spatial Distribution of Cutaneous Leishmaniasis. Journal of Primeasia, 5(1), 1-11. https://doi.org/10.9964
Finn, R. S., et al. (2020). Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. New England Journal of Medicine, 382(20), 1894-1905.
Finn, R. S., Masi, G., & Weitz, J. (2018). Gene therapy for hepatocellular carcinoma: Emerging approaches. Journal of Clinical Oncology, 36(6), 1-14. https://doi.org/10.1200/JCO.18.00504
Fisher, K. D., Bell, J. S., & McCauley, D. A. (2013). Clinical challenges in RNA interference therapies. Gene Therapy, 20(4), 17-29. https://doi.org/10.1038/gt.2012.13
Fu, Y., et al. (2019). MicroRNA-based therapies for hepatocellular carcinoma: Challenges and future perspectives. Cancer Letters, 460, 27-35.
Gabizon, A., Shmeeda, H., & Barenholz, Y. (2016). Pharmacokinetics of pegylated liposomal Doxil: Impact of liposome composition and other factors. Journal of Controlled Release, 130(1), 71-80. https://doi.org/10.1016/j.jconrel.2008.04.013
Gilabert, M., & Raoul, J. L. (2018). CRISPR technology in liver cancer: Progress and challenges. Liver Cancer, 7(2), 1-9. https://doi.org/10.1159/000487123
Gordon, A. C., Liu, H., & Zhao, X. (2020). RNA interference for cancer therapy: Mechanisms and applications. Current Cancer Drug Targets, 20(2), 187-199. https://doi.org/10.2174/1568009619666191010151805
Greten, T. F., et al. (2019). Clinical trials of vaccines for hepatocellular carcinoma. Journal of Hepatology, 70(4), 797-807.
Gu, X., Zhang, L., & Liu, J. (2022). Adeno-associated virus-mediated delivery of CRISPR-Cas9: A promising approach for cancer gene therapy. Frontiers in Oncology, 12, 679477. https://doi.org/10.3389/fonc.2022.679477
Guo, X., et al. (2021). Emerging nanotechnology applications in hepatocellular carcinoma therapy. Advanced Drug Delivery Reviews, 176, 113873.
Harding, J., Zhao, M., & Ladd, B. (2019). Advances in gene therapy for hepatocellular carcinoma: CRISPR-Cas9 and beyond. Hepatology Research, 49(2), 255-268. https://doi.org/10.1111/hepr.13375
He, A. R., et al. (2018). Combination therapies in advanced hepatocellular carcinoma: Current status and future directions. Hepatology, 68(1), 23-32.
He, X., Huang, J., & Zhang, X. (2018). Restoring miR-122 expression as a potential therapeutic strategy for hepatocellular carcinoma. Nature Reviews Gastroenterology & Hepatology, 15(6), 355-368. https://doi.org/10.1038/s41575-018-0004-6
Heinrich, S., Zhao, L., & Lu, L. (2019). Targeting immune checkpoints in liver cancer using CRISPR-based gene editing. Cancer Immunology Research, 7(8), 1232-1243. https://doi.org/10.1158/2326-6066.CIR-18-0527
Hernandez-Gea, V., & Friedman, S. L. (2013). Gene therapy targeting the liver: New frontiers for treating hepatocellular carcinoma. Hepatology, 58(4), 1596-1602. https://doi.org/10.1002/hep.26543
Hoshida, Y., Villanueva, A., & Llovet, J. M. (2009). Gene expression signature in the liver: Implications for precision medicine in hepatocellular carcinoma. Hepatology, 49(6), 1966-1976. https://doi.org/10.1002/hep.22950
Huang, A., et al. (2020). Role of the immune microenvironment in hepatocellular carcinoma pathogenesis and treatment. Annual Review of Pathology, 15, 175-197.
Huang, R., & Xie, W. (2020). The role of miR-122 in hepatocellular carcinoma: Implications for therapeutic intervention. Cellular and Molecular Gastroenterology and Hepatology, 9(3), 567-580. https://doi.org/10.1016/j.jcmgh.2020.02.013
Iavarone, M., Bassanelli, C., Caturelli, E., et al. (2019). Regorafenib after sorafenib failure in recurrent hepatocellular carcinoma after liver transplantation: A multicenter, open-label, phase 2 study. Hepatology, 70(5), 1726-1734. https://doi.org/10.1002/hep.30793
Ikeda, M., Seki, T., Ikeda, K., et al. (2019). Phase Ib study of lenvatinib in combination with pembrolizumab in patients with unresectable hepatocellular carcinoma. Journal of Clinical Oncology, 37(15), 1297-1305. https://doi.org/10.1200/JCO.19.00404
Invrea, M., Perez, C., Kim, J., et al. (2020). Patient-derived xenografts (PDXs) as a valuable model for human cancer research. Nature Reviews Cancer, 20(12), 685-693. https://doi.org/10.1038/s41571-020-0375-x
Ishiguro, T., et al. (2021). Glypican-3 targeted CAR-T cell therapy for hepatocellular carcinoma. Cancer Science, 112(4), 1415-1422.
Jin, G., Zhang, W., Zhao, L., et al. (2021). EGFR activation limits the efficacy of lenvatinib in liver cancer. Oncology Reports, 46(4), 1414-1424. https://doi.org/10.3892/or.2021.8022
Jung, H., Kim, J., Lee, J., et al. (2022). 3D bioprinting technologies in cancer research. Nature Communications, 13(1), 1-11. https://doi.org/10.1038/s41467-022-34845-x
Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478), eaau9077. https://doi.org/10.1126/science.aau9077
Kamal, Y., et al. (2022). CAR-T cell therapy in hepatocellular carcinoma: Challenges and advances. Cancers, 14(3), 489.
Karlovich, C. A., & Williams, M. (2019). Next-generation sequencing in hepatocellular carcinoma: Insights into precision oncology. Journal of Hepatology, 70(3), 419-430. https://doi.org/10.1016/j.jhep.2018.10.034
Kawakami, E., et al. (2022). mRNA vaccines for hepatocellular carcinoma: A new frontier in immunotherapy. Trends in Cancer, 8(4), 289-303.
Khurana, A., Majumdar, R., & Patel, N. (2021). CRISPR/Cas9-based therapies: Progress in hepatocellular carcinoma. Journal of Hepatology, 75(4), 872-880. https://doi.org/10.1016/j.jhep.2021.03.016
Kim, J. H., et al. (2020). Epigenetic modulation in hepatocellular carcinoma therapy: A potential approach to enhance immunotherapy. Clinical Cancer Research, 26(21), 5684-5695.
Knowlton, S., Taghavi, S., & McDevitt, T. (2015). Bioprinting technologies and their applications in cancer research. Biofabrication, 7(1), 011001. https://doi.org/10.1088/2043-6262/7/1/011001
Kudo, M. (2018). Cabozantinib as a second-line agent in hepatocellular carcinoma. Liver Cancer, 7(5), 451-459. https://doi.org/10.1159/000492236
Kudo, M., et al. (2018). Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma. The Lancet, 391(10126), 1163-1173.
Kudo, M., Finn, R. S., Cheng, A. L., et al. (2018). Lenvatinib versus sorafenib in advanced hepatocellular carcinoma: A multicenter, open-label, phase 3 randomized controlled trial. The Lancet Oncology, 19(10), 1479-1488. https://doi.org/10.1016/S1470-2045(18)30311-8
Leung, H. W., Chen, K., & Shih, T. S. (2020). Targeting SHP2 to overcome resistance to sorafenib in hepatocellular carcinoma. Cancer Research, 80(12), 2317-2327. https://doi.org/10.1158/0008-5472.CAN-19-3320
Li, H., et al. (2021). Engineered natural killer cells for hepatocellular carcinoma therapy. Molecular Therapy, 29(7), 2209-2221.
Li, X., Zhang, B., & Zhao, R. (2019). Human primary liver cancer organoids as models for drug response heterogeneity in hepatocellular carcinoma. Nature Communications, 10(1), 1-9. https://doi.org/10.1038/s41467-019-10506-4
Lim, S. J., Lee, J. Y., & Kwon, H. J. (2022). Organoid co-cultures to mimic the inflammatory tumor microenvironment in HCC. Frontiers in Oncology, 12, 724897. https://doi.org/10.3389/fonc.2022.724897
Liu, C., et al. (2019). CRISPR-based gene editing for hepatocellular carcinoma therapy. Hepatology, 70(3), 819-831.
Llovet, J. M., et al. (2021). Checkpoint inhibitors for advanced hepatocellular carcinoma: Lessons learned and future directions. Nature Reviews Clinical Oncology, 18(3), 151-167.
Llovet, J. M., Montal, R., & Sia, D. (2021). Immunotherapies for hepatocellular carcinoma: Recent advancements and future directions. Hepatology, 73(6), 2393-2407. https://doi.org/10.1002/hep.31442
Llovet, J. M., Ricci, S., Mazzaferro, V., et al. (2022). Immunotherapy combinations for advanced hepatocellular carcinoma: Latest clinical developments and challenges. Hepatology, 75(6), 1344-1358. https://doi.org/10.1002/hep.32179
Sureda, A., Martorell, M., Capó, X., Monserrat-Mesquida, M., (2020). Antitumor effects of triterpenes in hepatocellular carcinoma. Current Medicinal Chemistry, 27(13), 2000-2012. https://doi.org/10.2174/0929867327666200602132000
Xue, Y., Chen, Z., & Zhou, Z. (2021). siRNA targeting MYC enhances the therapeutic efficacy of sorafenib in hepatocellular carcinoma. Oncology Letters, 21(5), 4231-4238. https://doi.org/10.3892/ol.2021.12653
Zhao, P., Li, X., & Zhang, X. (2019). Injectable hydrogels for drug delivery in cancer therapy. Advanced Drug Delivery Reviews, 151, 123-136. https://doi.org/10.1016/j.addr.2019.02.005
View Dimensions
View Altmetric
Save
Citation
View
Share