Machine Learning in Healthcare: From Diagnostics to Personalized Medicine and Predictive Analytics
Md Habibur Rahman 1, Tanjila Islam 2, Md. Emran Hossen 3, Md. Estehad Chowdhury 4, Rezaul Hayat 5 , Md Shihab Sadik Shovon 6, Hasan - Al - Shabbir 7, Mohammad Alamgir 8, Sumi Akter 9, Redoyan Chowdhury 10, Atiqur Rahman Sunny 10*
Journal of Angiotherapy 8(12) 1-8 https://doi.org/10.25163/angiotherapy.81210160
Submitted: 16 October 2024 Revised: 08 December 2024 Published: 12 December 2024
Machine learning transforms healthcare through accurate diagnosis, tailored therapies, and predictive analytics, promoting a future of precision medicine.
Abstract
Background: Machine learning (ML) has profoundly revolutionized the healthcare sector by enhancing diagnostic precision, forecasting patient outcomes, individualizing treatment strategies, and streamlining healthcare processes. Notwithstanding its progress, issues of data privacy, security, algorithmic bias, and model openness impede extensive implementation. Methods: This review consolidates current research on machine learning applications in healthcare, emphasizing supervised, unsupervised, and reinforcement learning methodologies. It examines their functions in illness diagnosis, risk evaluation, medical image analysis, and tailored therapy approaches. This research also investigates new technologies, such federated learning and hybrid models, designed to tackle data-related difficulties while safeguarding patient privacy. Results: Supervised learning has greatly enhanced clinical decision-making, especially in illness identification and patient surveillance. Deep learning, particularly convolutional neural networks (CNNs), has transformed medical image processing, enhancing the early identification of illnesses like skin cancer and diabetic retinopathy. Reinforcement learning has shown potential in robotic surgery and individualized treatment planning. Nonetheless, obstacles such as disjointed healthcare data, ethical dilemmas, and legal limitations persist in affecting the deployment of machine learning. Conclusion: The future of machine learning in healthcare depends on advancing model interpretability, augmenting data-sharing frameworks, and incorporating ethical concerns to guarantee equitable and dependable healthcare provision. Progress in privacy-preserving methodologies and multidisciplinary partnerships will be essential in addressing current obstacles and promoting the ethical implementation of machine learning in clinical practice and policy formulation.
Keywords: Machine learning, Healthcare, Diagnostic, Medicine, Treatment
References
Adler, B., Lo, M., Seemann, T., & Murray, G. L. (2011). Pathogenesis of leptospirosis: the influence of genomics. Veterinary microbiology, 153(1-2), 73-81.
Ahmad, M. A., Eckert, C., & Teredesai, A. (2018, August). Interpretable machine learning in healthcare. In Proceedings of the 2018 ACM international conference on bioinformatics, computational biology, and health informatics (pp. 559-560).
Ahmad, M. A., Patel, A., Eckert, C., Kumar, V., & Teredesai, A. (2020, August). Fairness in machine learning for healthcare. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 3529-3530).
Alanazi, A. (2022). Using machine learning for healthcare challenges and opportunities. Informatics in Medicine Unlocked, 30, 100924.
Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature reviews microbiology, 8(4), 251-259.
Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. Jama, 319(13), 1317-1318.
Callahan, A., & Shah, N. H. (2017). Machine learning in healthcare. In Key advances in clinical informatics (pp. 279-291). Academic Press.
Chen, I. Y., Pierson, E., Rose, S., Joshi, S., Ferryman, K., & Ghassemi, M. (2021). Ethical machine learning in healthcare. Annual review of biomedical data science, 4(1), 123-144.
Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England journal of medicine, 372(9), 793-795.
Dua, S., Acharya, U. R., & Dua, P. (Eds.). (2014). Machine learning in healthcare informatics (Vol. 56). Berlin: Springer.
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639), 115-118.
Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. jama, 316(22), 2402-2410.
Habehh, H., & Gohel, S. (2021). Machine learning in healthcare. Current genomics, 22(4), 291.
Ifty, S.M.H, Bayazid, H., Ashakin, M.R., Tusher, M.I., Shadhin, R. H., Hoque, J., Chowdhury, R. & Sunny, A.R. et al. (2023b). Adoption of IoT in Agriculture - Systematic Review, Applied Agriculture Sciences, 1(1), 1-10, 9676
Ifty, S.M.H., Irin, F., Shovon, M.S.S., Amjad, M.H.H., Bhowmik, P.K., Ahmed, R., Ashakin, M.R., Hossain, B., Mushfiq, M., Sattar, A., Chowdhury, R. & Sunny, A.R. (2024). Advancements, Applications, and Future Directions of Artificial Intelligence in Healthcare, Journal of Angiotherapy, 8(8), 1-18, 9843, 10.25163/angiotherapy.889843
Ifty, S.M.H.,, S.M., Ashakin, M.R., Hossain, B., Afrin, S., Sattar, A., Chowdhury, R., Tusher, M.I., Bhowmik, P.K., Mia, M.T., Islam, T., Tufael, M. & Sunny, A.R. (2023a). IOT-Based Smart Agriculture in Bangladesh: An Overview. Applied Agriculture Sciences, 1(1), 1-6. 9563, 10.25163/agriculture.119563
Islam, M. R., Sunny, A. R., Sazzad, S. A., Dutta, A., Hasan, N., Miah, M. F., ... & Prodhan, S. H. (2023). Environmental Jeopardy and Coping Strategies of the Small-Scale Fishers in the Bangladesh Sundarbans: The Precedent of the World's Largest Mangrove. Egyptian Journal of Aquatic Biology & Fisheries,27(6). Doi:10.21608/ejabf.2023.330198
Javaid, M., Haleem, A., Singh, R. P., Suman, R., & Rab, S. (2022). Significance of machine learning in healthcare: Features, pillars and applications. International Journal of Intelligent Networks, 3, 58-73.
Jerie, S., Mutekwa, T. V., Mudyazhezha, O. C., Shabani, T., & Shabani, T. (2024). Environmental and Human Health Problems Associated with Hospital Wastewater Management in Zimbabwe. Current Environmental Health Reports, 1-10.
Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., ... & Zhang, K. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. cell, 172(5), 1122-1131.
Kuddus, M. A., Sunny, A. R., Sazzad, S. A., Hossain, M., Rahman, M., Mithun, M. H., ... & Raposo, A. (2022). Sense and Manner of WASH and Their Coalition with Disease and Nutritional Status of Under-five Children in Rural Bangladesh: A Cross-Sectional Study. Frontiers in Public Health, 10, 890293.
Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3), 31-57.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88.
Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: review, opportunities and challenges. Briefings in bioinformatics, 19(6), 1236-1246.
Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453.
Qayyum, A., Qadir, J., Bilal, M., & Al-Fuqaha, A. (2020). Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering, 14, 156-180.
Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347-1358.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 (pp. 234-241). Springer International Publishing.
Saleem, T. J., & Chishti, M. A. (2020). Exploring the applications of machine learning in healthcare. International Journal of Sensors Wireless Communications and Control, 10(4), 458-472.
Sazzad, S. A. S. S. A., Ana, R. A. R. S. R., Shawon, R., Moniruzzaman, M., Hussain, M. H. M., & Zaman, F. Z. F. (2024). Climate Change and Socioeconomic Challenges of Fishing Communities in the Coastal District of Shariatpur in Bangladesh. Pathfinder of Research, 2(1).
Sazzad, S. A., Billah, M., Sunny, A. R., Anowar, S., Pavel, J. H., Rakhi, M. S., ... & Al-Mamun, M. A. (2023). Sketching Livelihoods and Coping Strategies of Climate Vulnerable Fishers. Egyptian Journal of Aquatic Biology & Fisheries, 27(4).
Shailaja, K., Seetharamulu, B., & Jabbar, M. A. (2018, March). Machine learning in healthcare: A review. In 2018 Second international conference on electronics, communication and aerospace technology (ICECA) (pp. 910-914). IEEE.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. nature, 529(7587), 484-489.
Sunny, A. R., Mithun, M. H., Prodhan, S. H., Ashrafuzzaman, M., Rahman, S. M. A., Billah, M. M., ... & Hossain, M. M. (2021). Fisheries in the context of attaining Sustainable Development Goals (SDGs) in Bangladesh: COVID-19 impacts and future prospects. Sustainability, 13(17), 9912.
Sunny, A. R., Sazzad, S. A., Prodhan, S. H., Ashrafuzzaman, M., Datta, G. C., Sarker, A. K., ... & Mithun, M. H. (2021). Assessing impacts of COVID-19 on aquatic food system and small-scale fisheries in Bangladesh. Marine policy, 126, 104422.
Topol, E. (2019). Deep medicine: how artificial intelligence can make healthcare human again. Hachette UK.
Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 337-339.
Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., ... & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature reviews Drug discovery, 18(6), 463-477.
Wiens, J., & Shenoy, E. S. (2018). Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clinical infectious diseases, 66(1), 149-153.
View Dimensions
View Altmetric
Save
Citation
View
Share