Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Toxicological Assessment of Azo Dye Brown HT In Vivo

T M Tawabul Islam1, Nirmal Chandra Mahat2, Ivvala Anand Shaker3, Abul Kashem Tang2, Sheikh Arafat Rahman2, Mustakin Ahmed Shohel1, Inampudi Sailaja4*

+ Author Affiliations

Journal of Angiotherapy 8(8) 1-10 https://doi.org/10.25163/angiotherapy.889858

Submitted: 04 June 2024  Revised: 11 August 2024  Published: 14 August 2024 

This study demonstrated the adverse effects of azo dye Brown HT on juvenile health, underscoring the need for safer food practices to protect vulnerable populations.

Abstract


Background: Azo dyes, widely used in food, pharmaceuticals, textiles, and cosmetics, raise significant safety concerns due to their potential toxicological effects. Specifically, the biotransformation of azo dyes into aromatic amines, which may have carcinogenic potential, necessitates an investigation into their impact on health, especially for vulnerable populations like children. Methods: This study assessed the effects of Brown HT (E155) azo dye on juvenile rats. Male Long-Evans rats were divided into control and treatment groups, receiving varying doses of Brown HT over six weeks. Parameters measured included body weight, hematological and biochemical indices, and histopathological changes in liver and kidney tissues. Results: The results indicated a significant dose-dependent effect of Brown HT on body weight, blood parameters, and organ function. The high-dose group exhibited significant weight reduction, elevated liver enzymes, and abnormal lipid profiles. Histopathological examination revealed severe liver damage and renal impairment in high-dose groups, indicating potential long-term health risks associated with azo dye consumption. Conclusion: Brown HT azo dye demonstrates dose-dependent toxicity in juvenile rats, impacting physiological, biochemical, and histopathological parameters. These findings underscore the need for regulatory scrutiny regarding azo dye usage in food products, particularly for children, to mitigate associated health risks and promote safer food practices.

Keywords: Azo dyes, Brown HT, Juvenile Rats, Toxicology, Health Risks

References


Abd Elhalem, S., El-Atrash, A., Osman, A., Sherif, A., & Salim, E. (2016). Short term toxicity of food additive azo dye, sunset yellow (E110), at low doses, in male Sprague-Dawley rats. Egypt. J. Exp. Biol. Zool, 12, 13–21.

Abd-Elhakim, Y. M., Moustafa, G. G., Hashem, M. M., Ali, H. A., Abo-EL-Sooud, K., & El-Metwally, A. E. (2019). Influence of the long-term exposure to tartrazine and chlorophyll on the fibrogenic signalling pathway in liver and kidney of rats: the expression patterns of collagen 1-α, TGFβ-1, fibronectin, and caspase-3 genes. Environmental Science and Pollution Research, 26(12), 12368–12378. https://doi.org/10.1007/s11356-019-04734-w

ABDEL-RAHIM, E., EL-BELTAGI, H. S., ALI, R. F. M., AMER, A. A., & MOUSA, S. M. (2019). The Effects of Using Synthetic and Natural Color Foods on Lipid Profile and Liver Function in Rats. Notulae Scientia Biologicae, 11(4), 363–367. https://doi.org/10.15835/nsb11410504

Aboel-Zahab, H., El-Khyat, Z., Sidhom, G., Awadallah, R., Abdel-Al, W., & Mahdy, K. (1997). Physiological effects of some synthetic food colouring additives on rats. Bollettino Chimico Farmaceutico, 136(10), 615–627.

AL-Shinnawy, M. S. (2009). Physiological effect of a food additive on some haematological and biochemical parameters of male albino rats. Egyptian Academic Journal of Biological Sciences. A, Entomology, 2(1), 143–151.

Al-Shinnawy, M. S., & Elkattan, N. A. (2013). Assessment of the changes in some diagnostic parameters in male albino rats fed on an Azo Dye. Int. J. Eenv. Sci. Eng, 4, 85–92.

Amin, K. A., Abdel Hameid, H., & Abd Elsttar, A. H. (2010). Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food and Chemical Toxicology, 48(10), 2994–2999. https://doi.org/10.1016/j.fct.2010.07.039

Arkan Majhool, A., Yakdhan Saleh, M., Obaid Aldulaimi, A. K., Mahmood Saeed, S., Hassan, S. M., El-Shehry, M. F., Mohamed Awad, S., & Syed Abdul Azziz, S. S. (2023). Synthesis of New Azo Dyes of Uracil via Ecofriendly Method and Evaluation For The Breast, Liver and Lung Cancer Cells In vitro. Chemical Review and Letters, 6(4), 442–448.

Bansal, A. K., Bansal, M., Soni, G., & Bhatnagar, D. (2005). Protective role of Vitamin E pre-treatment on N-nitrosodiethylamine induced oxidative stress in rat liver. Chemico-Biological Interactions, 156(2–3), 101–111. https://doi.org/10.1016/j.cbi.2005.08.001

Bladin, P. F. (2014). Azo dyes and the blood–brain barrier: Robert Aird’s novel concept in chronic neurological disease (1903–2000). Journal of Clinical Neuroscience, 21(1), 33–39. https://doi.org/10.1016/j.jocn.2013.06.014

Brown, M. A., & De Vito, S. C. (1993). Predicting azo dye toxicity. Critical Reviews in Environmental Science and Technology, 23(3), 249–324. https://doi.org/10.1080/10643389309388453

Cemek, M., Emin Büyükokuroglu, M., Sertkaya, F., Alpdagtas, S., Hazini, A., Önül, A., & Gönes, S. (2014). Effects of Food Color Additiveson Antioxidant Functions and Bioelement Contents of Liver, Kidney and Brain Tissues in Rats. Journal of Food and Nutrition Research, 2(10), 686–691. https://doi.org/10.12691/jfnr-2-10-6

Chung, K.-T. (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C, 34(4), 233–261. https://doi.org/10.1080/10590501.2016.1236602

Chung, K.-T., Stevens, S. E., & Cerniglia, C. E. (1992). The Reduction of Azo Dyes by the Intestinal Microflora. Critical Reviews in Microbiology, 18(3), 175–190. https://doi.org/10.3109/10408419209114557

Council, N. R., Earth, D. on, Studies, L., Research, I. for L. A., Care, C. for the U. of the G. for the, & Animals, U. of L. (2010). Guide for the care and use of laboratory animals.

Crawley, W. T., Jungels, C. G., Stenmark, K. R., & Fini, M. A. (2022). U-shaped association of uric acid to overall-cause mortality and its impact on clinical management of hyperuricemia. Redox Biology, 51, 102271. https://doi.org/10.1016/j.redox.2022.102271

Elbanna, K., Sarhan, O. M., Khider, M., Elmogy, M., Abulreesh, H. H., & Shaaban, M. R. (2017). Microbiological, histological, and biochemical evidence for the adverse effects of food azo dyes on rats. Journal of Food and Drug Analysis, 25(3), 667–680. https://doi.org/10.1016/j.jfda.2017.01.005

Elekima, I., Nwachuku, O. E., Nduka, N., Nwanjo, H. U., & Ukwukwu, D. (2019a). Biochemical and Histological Changes Associated with Azo Food Dye (Tartrazine) in Male Albino Rats. Asian Journal of Research in Biochemistry, 1–14. https://doi.org/10.9734/ajrb/2019/v5i130083

El-Wahab, H. M. F. A., & Moram, G. S. E.-D. (2013). Toxic effects of some synthetic food colorants and/or flavor additives on male rats. Toxicology and Industrial Health, 29(2), 224–232. https://doi.org/10.1177/0748233711433935

Eraslan, G., Kanbur, M., & Silici, S. (2007). Evaluation of propolis effects on some biochemical parameters in rats treated with sodium fluoride. Pesticide Biochemistry and Physiology, 88(3), 273–283. https://doi.org/10.1016/j.pestbp.2007.01.002

Golka, K., Kopps, S., Prager, H.-M., Mende, S. v., Thiel, R., Jungmann, O., Zumbe, J., Bolt, H. M., Blaszkewicz, M., Hengstler, J. G., & Selinski, S. (2012). Bladder Cancer in Crack Testers Applying Azo Dye-Based Sprays to Metal Bodies. Journal of Toxicology and Environmental Health, Part A, 75(8–10), 566–571. https://doi.org/10.1080/15287394.2012.675309

Hassan, A. J., & Salman, H. A. (2016). The Effect Study of Using Different Concentrations of Chocolate Brown Dye (Chocolate Brown HT E155) on Some Physiological Parameters and Histological Structure of Stomach and Intestine on Albino Rats. Journal of Al-Qadisiyah for Pure Science (Quarterly), 2(21), 24–35.

Himri, I., Bellahcen, S., Souna, F., Belmekki, F., Aziz, M., Bnouham, M., Zoheir, J., Berkia, Z., Mekhfi, H., & Saalaoui, E. A. (2011). A 90-day oral toxicity study of tartrazine, a synthetic food dye, in wistar rats. Group, 300(00).

Hussain, B., Sajad, M., Usman, H., A. Al-Ghanim, K., Riaz, M. N., Berenjian, A., Mahboob, S., & Show, P. L. (2022). Assessment of hepatotoxicity and nephrotoxicity in Cirrhinus mrigala induced by trypan blue - An azo dye. Environmental Research, 215, 114120. https://doi.org/10.1016/j.envres.2022.114120

Ibukun, A. K. R., & Augustine, O. O. (2021). Prevalence of Azo Dye Adulterated Palm Oil in Ondo State (Nigeria) and Toxicological Effects on Liver, Kidney and Testicular Tissues of Albino Rats. JFST.

John, A., Yang, H.-H., Muhammad, S., Khan, Z. I., Yu, H., Luqman, M., Tofail, M., Hussain, M. I., & Awan, M. U. F. (2022). Cross Talk between Synthetic Food Colors (Azo Dyes), Oral Flora, and Cardiovascular Disorders. Applied Sciences, 12(14), 7084. https://doi.org/10.3390/app12147084

Josephy, P. D., & Allen-Vercoe, E. (2023). Reductive metabolism of azo dyes and drugs: Toxicological implications. Food and Chemical Toxicology, 178, 113932. https://doi.org/10.1016/j.fct.2023.113932

Koller, L. D., & Roan, J. G. (1980). Response of lymphocytes from lead, cadmium, and methylmercury exposed mice in the mixed lymphocyte culture. Journal of Environmental Pathology and Toxicology, 4(1), 393–398.

Lendrum, A. C., Slidders, W., & Fraser, D. S. (1972). Renal hyalin. Journal of Clinical Pathology, 25(5), 373–396. https://doi.org/10.1136/jcp.25.5.373

Ninomiya, T., Kubo, M., Doi, Y., Yonemoto, K., Tanizaki, Y., Tsuruya, K., Sueishi, K., Tsuneyoshi, M., Iida, M., & Kiyohara, Y. (2007). Prehypertension Increases the Risk for Renal Arteriosclerosis in Autopsies. Journal of the American Society of Nephrology, 18(7), 2135–2142. https://doi.org/10.1681/ASN.2007010067

PALIPOCH, S., & PUNSAWAD, C. (2013). Biochemical and Histological Study of Rat Liver and Kidney Injury Induced by Cisplatin. Journal of Toxicologic Pathology, 26(3), 293–299. https://doi.org/10.1293/tox.26.293

Reza, Md. S. Al, Hasan, Md. M., Kamruzzaman, Md., Hossain, Md. I., Zubair, Md. A., Bari, L., Abedin, Md. Z., Reza, Md. A., Khalid-Bin-Ferdaus, K. Md., Haque, K. Md. F., Islam, K., Ahmed, M. U., & Hossain, Md. K. (2019a). Study of a common azo food dye in mice model: Toxicity reports and its relation to carcinogenicity. Food Science & Nutrition, 7(2), 667–677. https://doi.org/10.1002/fsn3.906

Schouteten, J. J., De Pelsmaeker, S., Juvinal, J., Lagast, S., Dewettinck, K., & Gellynck, X. (2018). Influence of sensory attributes on consumers’ emotions and hedonic liking of chocolate. British Food Journal, 120(7), 1489–1503. https://doi.org/10.1108/BFJ-08-2017-0436

SENSOY, E. (2024). Determination of the effects of sunset yellow on mouse liver and pancreas using histological methods. Toxicology Research, 13(3). https://doi.org/10.1093/toxres/tfae070

Sharma, G., Gautam, D., & Goyal, R. P. (2009). Tartrazine induced haematological and serological changes in female Swiss albino mice, Mus musculus. Pharmacologyonline, 3, 774–788.

Singh, R. L., Khanna, S. K., & Singh, G. B. (1988). Acute and short-term toxicity of a popular blend of metanil yellow and orange II in albino rats. Indian J Exp Biol.

Soltan, S. S. A., & Shehata, M. M. E. M. (2012). The Effects of Using Color Foods of Children on Immunity Properties and Liver, Kidney on Rats. Food and Nutrition Sciences, 03(07), 897–904. https://doi.org/10.4236/fns.2012.37119

Tameda, M. (2005). Aspartate aminotransferase-immunoglobulin complexes in patients with chronic liver disease. World Journal of Gastroenterology, 11(10), 1529. https://doi.org/10.3748/wjg.v11.i10.1529

Tsomaia, K., Patarashvili, L., Karumidze, N., Bebiashvili, I., Az-maipharashvili, E., Modebadze, I., Dzidziguri, D., Sareli, M., Gusev, S., & Kordzaia, D. (2020). Liver structural transformation after partial hepatectomy and repeated partial hepatectomy in rats: A renewed view on liver regeneration. World Journal of Gastroenterology, 26(27), 3899–3916. https://doi.org/10.3748/wjg.v26.i27.3899

Watabe, T., Ozawa, N., Kobayashi, F., & Kurata, H. (1980). Reduction of sulphonated water-soluble azo dyes by micro-organisms from human faeces. Food and Cosmetics Toxicology, 18(4), 349–352. https://doi.org/10.1016/0015-6264(80)90187-X

Westlake, G. E., Bunyan, P. J., Martin, A. D., Stanley, P. I., & Steed, L. C. (1981). Organophosphate poisoning. Effects of selected organophosphate pesticides on plasma enzymes and brain esterases of Japanese quail (Coturnix coturnix japonica). Journal of Agricultural and Food Chemistry, 29(4), 772–778. https://doi.org/10.1021/jf00106a021

Yousef, M. I., Omar, S. A. M., El-Guendi, M. I., & Abdelmegid, L. A. (2010). Potential protective effects of quercetin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver and kidney functions and haematotoxicity in rat. Food and Chemical Toxicology, 48(11), 3246–3261. https://doi.org/10.1016/j.fct.2010.08.034

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
292
View
0
Share