Natural Diabetes Treatment with Litchi Seeds Extract In Vivo
Mustakin Ahmed Shohel 1, Abul Kashem Tang 2, Inampudi Sailaja 3, T M Tawabul Islam 1, Md. Humayan Kabir 2, Nirmal Chandra Mahat 2, Ivvala Anand Shaker 4*
Journal of Angiotherapy 8(7) 1-13 https://doi.org/10.25163/angiotherapy.879738
Submitted: 06 May 2024 Revised: 03 July 2024 Published: 05 July 2024
This study demonstrated the therapeutic potential of litchi seeds for diabetes as safer, effective alternatives to synthetic drugs.
Abstract
Background: Diabetes mellitus imposes a substantial health and economic cost on societies. Novel antidiabetic medicines are necessary because the present therapies have impoverished safety and effectiveness. Traditional medicines often make use of medicinal plants, which are considered to be excellent choices. Objective: The aim of the research to investigating the potential anti-diabetic activities of extracts from Litchi chinensis seeds (LCS). Methods: The extract was prepared using an aqueous solvent and 80% ethanol. It was subsequently used in laboratory settings to investigate primary alpha amylase inhibition, with acarbose serving as the reference standard. The extract was then administered in vivo to observe the effects on STZ-mediated diabetes rats. The induction of diabetes in Long-Evans rats was achieved by administering a solitary intraperitoneal injection of streptozotocin at a dosage of 80 mg/kg. the hydroethanolic extract of litchi seed were used at different concentrations (100 and 200 mg/kg BW) to treat rats with diabetes. The finding analyzed various biochemical and histological parameters in diabetic rats over a period of 28 day, using established protocols. Results: The results showed significant improvements in plasma glucose (p < 0.001) and considerable increased in body weight (p < 0.0001). The LCS extract (200 mg/kg BW) showed significant ameliorative effects on glycemic markers, lipid profile, and renal functioning. Additionally, histopathological studies reveals that LCS can potentially reduce renal inflammation as well as hepatic tissue damage. Conclusions: The findings indicate that hydroethanolic litchi seed extracts may have potential therapeutic benefits in managing diabetes and reducing lipid levels.
Keywords: Litchi chinensis, Anti-hyperglycaemic activity, Glibenclamide, Streptozotocin, Hyperlipidemia, Diabetes mellitus.
References
Abdul-Hamid, M., & Moustafa, N. (2013). Protective effect of curcumin on histopathology and ultrastructure of pancreas in the alloxan treated rats for induction of diabetes. The Journal of Basic & Applied Zoology, 66(4), 169–179. https://doi.org/10.1016/j.jobaz.2013.07.003
Ahmed, M. S., Massoud, A. H., Derbalah, A. S., Al-Brakati, A., Al-Abdawani, M. A., Eltahir, H. A., Yanai, T., & Elmahallawy, E. K. (2020). Biochemical and histopathological alterations in different tissues of rats due to repeated oral dose toxicity of cymoxanil. Animals, 10(12), 2205. https://doi.org/10.3390/ani10122205
Ahmed, O. M., Abdel Fattah, A. A., Abdul-Hamid, M., Abdel-Aziz, A. M., Sakr, H. I., Damanhory, A. A., Abdel-Kawi, S. H., Ghaboura, N., & Awad, M. M. Y. (2023). Antidiabetic and Liver Histological and Ultrastructural Effects of Cynara scolymus Leaf and Flower Head Hydroethanolic Extracts in Nicotinamide/Streptozotocin-Induced Diabetic Rats. Evidence-Based Complementary and Alternative Medicine, 2023, 1–13. https://doi.org/10.1155/2023/4223026
Al-Attar, A. M., & Zari, T. A. (2007). Modulatory effects of ginger and clove oils on physiological responses in streptozotocin-induced diabetic rats. https://doi.org/10.3923/ijp.2007.34.40
Alexander-Aguilera, A., Aguirre-Maldonado, I., Antolín, J. R., Toledo, L. N., Rodríguez, I. S., & Sánchez Otero, M. G. (2019). Effect of Litchi chinensis on adipose and hepatic tissues in rats with obesity and non-alcoholic fatty liver disease (NAFLD). Journal of the Saudi Society of Agricultural Sciences, 18(3), 235–240. https://doi.org/10.1016/j.jssas.2017.06.002
Asmah Rahmat, A. A. (2015). Effect of Pomegranate on Histopathology of Liver and Kidney on Generated Oxidative Stress Diabetic Induced Rats. Journal of Cytology & Histology, 6(1). https://doi.org/10.4172/2157-7099.1000294
Association, A. D. (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37(Supplement_1), S81–S90. https://doi.org/10.2337/dc14-S081
Association, A. D. (2015). 8. Cardiovascular disease and risk management. Diabetes Care, 38(Supplement_1), S49–S57. https://doi.org/10.2337/dc15-S011
Bhat, R. S., & Al-daihan, S. (2014). Antimicrobial activity of Litchi chinensis and Nephelium lappaceum aqueous seed extracts against some pathogenic bacterial strains. Journal of King Saud University-Science, 26(1), 79–82. https://doi.org/10.1016/j.jksus.2013.05.007
Birgani, G. A., Ahangarpour, A., Khorsandi, L., & Moghaddam, H. F. (2018). Anti-diabetic effect of betulinic acid on streptozotocin-nicotinamide induced diabetic male mouse model. Brazilian Journal of Pharmaceutical Sciences, 54(2). https://doi.org/10.1590/s2175-97902018000217171
Choi, S.-A., Lee, J. E., Kyung, M. J., Youn, J. H., Oh, J. Bin, & Whang, W. K. (2017). Anti-diabetic functional food with wasted litchi seed and standard of quality control. Applied Biological Chemistry, 60, 197–204. https://doi.org/10.1007/s13765-017-0269-9
de Rezende Queiroz, E., de Abreu, C. M. P., Rocha, D. A., Simão, A. A., Bastos, V. A. A., Botelho, L. N. S., & Braga, M. A. (2015). Anti-nutritional compounds in fresh and dried lychee fractions (Litchi chinensis Sonn.). African Journal of Agricultural Research, 10(6), 499–504.
Emanuele, S., Lauricella, M., Calvaruso, G., D’Anneo, A., & Giuliano, M. (2017). Litchi chinensis as a Functional Food and a Source of Antitumor Compounds: An Overview and a Description of Biochemical Pathways. Nutrients, 9(9), 992. https://doi.org/10.3390/nu9090992
Eraslan, G., Kanbur, M., & Silici, S. (2007). Evaluation of propolis effects on some biochemical parameters in rats treated with sodium fluoride. Pesticide Biochemistry and Physiology, 88(3), 273–283. https://doi.org/10.1016/j.pestbp.2007.01.002
Furman, B. L. (2015). Streptozotocin-induced diabetic models in mice and rats. Current Protocols in Pharmacology, 70(1), 5–47. https://doi.org/10.1002/0471141755.ph0547s70
Graham, M. L., Janecek, J. L., Kittredge, J. A., Hering, B. J., & Schuurman, H.-J. (2011). The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comparative Medicine, 61(4), 356–360. https://pubmed.ncbi.nlm.nih.gov/22330251
Gupta, P., Bhatnagar, I., Kim, S.-K., Verma, A. K., & Sharma, A. (2014). In-vitro cancer cell cytotoxicity and alpha amylase inhibition effect of seven tropical fruit residues. Asian Pacific Journal of Tropical Biomedicine, 4, S665–S671. https://doi.org/10.12980/apjtb.4.2014b433
Habib, S. L., & Rojna, M. (2013). Diabetes and risk of cancer. International Scholarly Research Notices, 2013. https://doi.org/10.1155/2013/583786
Hung, A. M., Roumie, C. L., Greevy, R. A., Liu, X., Grijalva, C. G., Murff, H. J., Ikizler, T. A., & Griffin, M. R. (2012). Comparative effectiveness of incident oral antidiabetic drugs on kidney function. Kidney International, 81(7), 698–706. https://doi.org/10.1038/ki.2011.444
Jaiswal, Y. S., Tatke, P. A., Gabhe, S. Y., & Vaidya, A. B. (2017). Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n -streptozotocin diabetic rats. Journal of Traditional and Complementary Medicine, 7(4), 421–427. https://doi.org/10.1016/j.jtcme.2016.11.007
Jeon, C. Y., Roberts, C. K., Crespi, C. M., & Zhang, Z.-F. (2013). Elevated liver enzymes in individuals with undiagnosed diabetes in the U.S. Journal of Diabetes and Its Complications, 27(4), 333–339. https://doi.org/10.1016/j.jdiacomp.2013.04.005
Jinato, T., Chayanupatkul, M., Dissayabutra, T., Chutaputti, A., Tangkijvanich, P., & Chuaypen, N. (2022). Litchi-Derived Polyphenol Alleviates Liver Steatosis and Gut Dysbiosis in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Double-Blinded, Placebo-Controlled Study. Nutrients, 14(14), 2921. https://doi.org/10.3390/nu14142921
Khandelwal, P., & Khanna, S. (2020). Diabetic peripheral neuropathy: An insight into the pathophysiology, diagnosis, and therapeutics. In Wound Healing, Tissue Repair, and Regeneration in Diabetes (pp. 49–77). Elsevier. https://doi.org/10.1016/B978-0-12-816413-6.00004-6
Klaman, L. D., Boss, O., Peroni, O. D., Kim, J. K., Martino, J. L., Zabolotny, J. M., Moghal, N., Lubkin, M., Kim, Y.-B., & Sharpe, A. H. (2000). Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Molecular and Cellular Biology. 20(15), 5479–5489. https://doi.org/10.1128/mcb.20.15.5479-5489.2000
Kolset, S. O., Reinholt, F. P., & Jenssen, T. (2012). Diabetic Nephropathy and Extracellular Matrix. Journal of Histochemistry & Cytochemistry, 60(12), 976–986. https://doi.org/10.1369/0022155412465073
Li, F., Zhang, Y., & Zhong, Z. (2011). Antihyperglycemic effect of Ganoderma lucidum polysaccharides on streptozotocin-induced diabetic mice. International Journal of Molecular Sciences, 12(9), 6135–6145. https://doi.org/10.3390/ijms12096135
Lin, C.-C., Chung, Y.-C., & Hsu, C.-P. (2013). Anti-cancer potential of litchi seed extract. World J Exp Med 2013; 3: 56, 61. https://doi.org/10.5493/wjem.v3.i4.56
Mahran, H. N., Saber, L. M., Alghaithy, A. A., & Elareefy, A. A. (2017). The role of elevated alanine aminotransferase (ALT), FasL and atherogenic dyslipidemia in type II diabetes mellitus. Journal of Taibah University Medical Sciences, 12(1), 8–13. https://doi.org/10.1016/j.jtumed.2016.10.002
Mamun, F., Rahman, Md. M., Zamila, M., Subhan, N., Hossain, H., Raquibul Hasan, S. M., Alam, M. A., & Haque, Md. A. (2020). Polyphenolic compounds of litchi leaf augment kidney and heart functions in 2K1C rats. Journal of Functional Foods, 64, 103662. https://doi.org/10.1016/j.jff.2019.103662
Noh, J. S., Kim, H. Y., Park, C. H., Fujii, H., & Yokozawa, T. (2010). Hypolipidaemic and antioxidative effects of oligonol, a low-molecular-weight polyphenol derived from lychee fruit, on renal damage in type 2 diabetic mice. British Journal of Nutrition, 104(8), 1120–1128. https://doi.org/10.1017/S0007114510001819
Rados, D. V., Pinto, L. C., Remonti, L. R., Leitao, C. B., & Gross, J. L. (2016). The association between sulfonylurea use and all-cause and cardiovascular mortality: a meta-analysis with trial sequential analysis of randomized clinical trials. PLoS Medicine, 13(4), e1001992. https://doi.org/10.1371/journal.pmed.1001992
Ramadan, B. K., Schaalan, M. F., & Tolba, A. M. (2017). Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan induced diabetic rats. BMC Complementary and Alternative Medicine, 17(1), 37. https://doi.org/10.1186/s12906-016-1530-1
Ren, S., Xu, D., Pan, Z., Gao, Y., Jiang, Z., & Gao, Q. (2011). Two flavanone compounds from litchi (Litchi chinensis Sonn.) seeds, one previously unreported, and appraisal of their α-glucosidase inhibitory activities. Food Chemistry, 127(4), 1760–1763. https://doi.org/10.1016/j.foodchem.2011.02.054
Roslan, J., Giribabu, N., Karim, K., & Salleh, N. (2017). Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomedicine & Pharmacotherapy, 86, 570–582. https://doi.org/10.1016/j.biopha.2016.12.044
Rui, L. (2014). Energy Metabolism in the Liver. In Comprehensive Physiology (pp. 177–197). Wiley. https://doi.org/10.1002/cphy.c130024
Sharabi, K., Tavares, C. D. J., Rines, A. K., & Puigserver, P. (2015). Molecular pathophysiology of hepatic glucose production. Molecular Aspects of Medicine, 46, 21–33. https://doi.org/10.1016/j.mam.2015.09.003
Shirali, S., Zahra Bathaie, S., & Nakhjavani, M. (2013). Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats. Phytotherapy Research, 27(7), 1042–1047. https://doi.org/10.1002/ptr.4836
Suckling, R., & Gallagher, H. (2012). Chronic kidney disease, diabetes mellitus and cardiovascular disease: risks and commonalities. Journal of Renal Care, 38, 4–11. https://doi.org/10.1111/j.1755-6686.2012.00274.x
Thakkar, B., Aronis, K. N., Vamvini, M. T., Shields, K., & Mantzoros, C. S. (2013). Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: a meta-analysis using primary data of published studies. Metabolism, 62(7), 922–934. https://doi.org/10.1016/j.metabol.2013.01.014
Van de Laar, F. A., Lucassen, P. L., Akkermans, R. P., van de Lisdonk, E. H., Rutten, G. E., & van Weel, C. (2005). α-Glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care, 28(1), 154–163. https://doi.org/10.1002/14651858.cd005061.pub2
Vergès, B. (2015). Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia, 58(5), 886–899. https://doi.org/10.1007/s00125-015-3525-8
Wang, L., Lou, G., Ma, Z., & Liu, X. (2011). Chemical constituents with antioxidant activities from litchi (Litchi chinensis Sonn.) seeds. Food Chemistry, 126(3), 1081–1087. https://doi.org/10.1016/j.foodchem.2010.11.133
Xu, X., Xie, H., Hao, J., Jiang, Y., & Wei, X. (2010). Eudesmane sesquiterpene glucosides from lychee seed and their cytotoxic activity. Food Chemistry, 123(4), 1123–1126. https://doi.org/10.1016/j.foodchem.2010.05.073
Zhang, W. R., & Parikh, C. R. (2019). Biomarkers of Acute and Chronic Kidney Disease. Annual Review of Physiology, 81(1), 309–333. https://doi.org/10.1146/annurev-physiol-020518-114605. https://doi.org/10.1146/annurev-physiol-020518-114605
Zhang, Y., Jin, D., An, X., Duan, L., Duan, Y., & Lian, F. (2021). Lychee Seed as a Potential Hypoglycemic Agent, and Exploration of its Underlying Mechanisms. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.737803
View Dimensions
View Altmetric
Save
Citation
View
Share