Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

High Growth Differentiation Factor-15 (GDF-15) in Rheumatoid Arthritis Patients Potential Risk for Cardiovascular Disease

Ghufran Abd Omran Abdulridha 1,2*, Mustafa Abdulkadhim Hussein 3, Suhad Rasheed Majeed 3

 

+ Author Affiliations

Journal of Angiotherapy 8(3) 1-8 https://doi.org/10.25163/angiotherapy.839595

Submitted: 16 January 2024  Revised: 18 March 2024  Published: 22 March 2024 

This study showed the high levels GDF-15, a clinical marker in rheumatoid arthritis, signified disease progression and heightened cardiovascular risk, implicating inflammation and tissue damage.

Abstract


Rheumatoid arthritis (RA) is a chronic autoimmune disorder primarily affecting joints, leading to pain, stiffness, and functional disability. The inflammatory mechanisms underlying RA also impact various organ systems, with significant implications for morbidity and mortality. In this study, we analyzed the growth differentiation factor-15 (GDF-15), a cytokine implicated in inflammation and associated with RA and cardiovascular diseases. We conducted a case-control study involving 150 RA patients and 150 healthy individuals, assessing various biomarkers (ACPA, CRP, ESR, and RF) including GDF-15, lipid profile, and inflammatory markers. Our results demonstrated significantly elevated levels of GDF-15 in RA patients (309.44 pg/ml) compared to controls (64.40 pg/ml), indicating its potential role as a biomarker for RA and cardiovascular risk (p<0.001). Furthermore, RA patients exhibited dyslipidemia characterized by elevated total cholesterol, triglycerides, LDL cholesterol, and atherogenic indices, along with decreased HDL cholesterol levels, predisposing them to a higher risk of atherosclerosis and cardiovascular complications (p<0.001). Correlation analyses revealed associations between GDF-15 levels, lipid profile parameters, and disease severity markers, highlighting the intricate interplay between inflammation, lipid metabolism, and RA progression. These findings demonstrated the importance of early detection and management of dyslipidemia in RA patients to mitigate cardiovascular risk. Overall, our study contributes to understanding the pathophysiology of RA and identifies potential biomarkers for disease monitoring and risk stratification.

Keywords: Rheumatoid arthritis (RA), Growth differentiation factor-15 (GDF-15), C-Reactive Protein (CRP), Anti-cyclic citrullinated peptide (ACPA), Biomarkers, Cardiovascular risk

References


Adela, R., & Banerjee, S. K. (2015). GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: a translational prospective. Journal of diabetes research, 2015.  https://doi.org/10.1155/2015/490842.

Ahmeda, E. S. (2020). Association between Growth Differentiation Factor 15 and Cardiovascular Risk in Patients with Type 2 Diabetes Mellitus.  https://doi.org/10.1111/dom.14553.

Al Ghuraibawi, Z. A. G., Sharquie, I. K., & Gorial, F. I. (2023). A novel link of serum IL-39 levels in patients with rheumatoid arthritis. Iraqi Journal of Science, 1651-1661.

Al_Badran, A. H. K., Algabri, H. C., Al Saeedi, K. R. H., & Alqazzaz, A. M. (2022). Incidence of rheumatoid arthritis at Marjan teaching hospital in Babylon, Iraq (2014–2019). Medical Journal of Babylon, 19(3), 358-361.

Alattabi, A. S., Abood Jaber, M. A., & Zenki, F. A. (2019). Comparison of ACPA and Anti RA 33 Ab as Prognostic Factors in Patients with Rheumatoid Arthritis. Indian Journal of Public Health Research & Development, 10(5).

Albabawaty, N. S., Majid, A. Y., Alosami, M. H., & Mahmood, H. G. (2020). Role of high sensitivity C-Reactive protein and some of heavy metals in patients with rheumatoid arthritis. Ann Trop Med Public Health, 23, 16.

Al-Bedri, K., Al-Quriashi, N. K. M., Gorial, F. I., & Younis, H. A. (2016). Ocular manifestations in rheumatoid arthritis: a descriptive cross-sectional study from Iraq. J Nat Sci Res, 6(8), 57.

Al-dabbagh, n. Y., & hashim, z. A. (2018). Evaluation of anti-ccp antibodies and rheumatoid factor for the laboratory diagnosis of rheumatoid arthritis. Duhok Medical Journal, 12(1), 41-54.

Aletaha, D., Neogi, T., Silman, A. J., Funovits, J., Felson, D. T., Bingham III, C. O., ... & Hawker, G. (2010). 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis & rheumatism, 62(9), 2569-2581.

Aletaha, D., Neogi, T., Silman, A. J., Funovits, J., Felson, D. T., Bingham III, C. O., ... & Hawker, G. (2010). 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis & rheumatism, 62(9), 2569-2581.

Ali, G. A., & Abbas, T. S. (2022). Anti-Carbamylated Protein Antibody Test Accuracy In Some Iraqi Patients With Rheumatoid Arthritis. Medical Science Journal for Advance Research, 3(4), 171-178.

Ali, G. A., & Al-Turaihi, T. S. A. (2022). Identification serum CXCL13 chemokine as a novel biomarker in diagnosis of rheumatoid arthritis. HIV Nursing, 22(2), 3686-3690.

Alifu, J., Xiang, L., Zhang, W., Qi, P., Chen, H., Liu, L., ... & Che, W. (2023). Association between the atherogenic index of plasma and adverse long-term prognosis in patients diagnosed with chronic coronary syndrome. Cardiovascular Diabetology, 22(1), 255.

Allain, C. C., Poon, L. S., Chan, C. S., Richmond, W. F. P. C., & Fu, P. C. (1974). Enzymatic determination of total serum cholesterol. Clinical chemistry, 20(4), 470-475.

Al-Marri, M. R. H. A., & Kirkpatrick, M. B. (2000). Erythrocyte sedimentation rate in childhood tuberculosis: is it still worthwhile?. The International Journal of Tuberculosis and Lung disease, 4(3), 237-239.

Almurshedi, S. M., Alasady, R. A. A., Alsherees, H. A., Almohana, A. M., Aljayashi, K. G., & Almudhaffer, D. H. (2023). The Role of Galectin-3 in The Diagnosis and Evaluation of Disease Activity in Rheumatoid Arthritis. Jurnal Biota, 9(2), 118-126.

Almutairi, K. B., Nossent, J. C., Preen, D. B., Keen, H. I., & Inderjeeth, C. A. (2021). The prevalence of rheumatoid arthritis: a systematic review of population-based studies. The Journal of rheumatology, 48(5), 669-676.

Almutairi, K., Nossent, J., Preen, D., Keen, H., & Inderjeeth, C. (2021). The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review. Rheumatology international, 41(5), 863-877.

Al-Rawi, Z. S., Alazzawi, A. J., Alajili, F. M., & Alwakil, R. (1978). Rheumatoid arthritis in population samples in Iraq. Annals of the rheumatic diseases, 37(1), 73-75.

Alwan, I. T., & Ghali, K. H. (2021). The correlation between accp with developing, progression and activity of rheumatoid arthritis. Annals of the Romanian Society for Cell Biology, 408-418.

Arkoumani, M., Papadopoulou-Marketou, N., Nicolaides, N. C., Kanaka-Gantenbein, C., Tentolouris, N., & Papassotiriou, I. (2020). The clinical impact of growth differentiation factor-15 in heart disease: A 2019 update. Critical Reviews in Clinical Laboratory Sciences, 57(2), 114-125.

Asrih, M., Wei, S., Nguyen, T. T., Yi, H. S., Ryu, D., & Gariani, K. (2023). Overview of growth differentiation factor 15 in metabolic syndrome. Journal of Cellular and Molecular Medicine, 27(9), 1157-1167.

Attar, S. M., & Al Ghamdi, A. (2010). Radiological changes in rheumatoid arthritis patients at a teaching hospital in Saudi Arabia. EMHJ-Eastern Mediterranean Health Journal, 16 (9), 953-957, 2010.

Bag-Ozbek, A., & Giles, J. T. (2015). Inflammation, adiposity, and atherogenic dyslipidemia in rheumatoid arthritis: is there a paradoxical relationship?. Current allergy and asthma reports, 15, 1-10.

Bao, X., Borné, Y., Muhammad, I. F., Nilsson, J., Lind, L., Melander, O., ... & Engström, G. (2019). Growth differentiation factor 15 is positively associated with incidence of diabetes mellitus: the Malmö Diet and Cancer–Cardiovascular Cohort. Diabetologia, 62, 78-86.

Bemis, E. A., Demoruelle, M. K., Seifert, J. A., Polinski, K. J., Weisman, M. H., Buckner, J. H., ... & Norris, J. M. (2021). Factors associated with progression to inflammatory arthritis in first-degree relatives of individuals with RA following autoantibody positive screening in a non-clinical setting. Annals of the rheumatic diseases, 80(2), 154-161.

Blasco, M. A. (2007). Telomere length, stem cells and aging. Nature chemical biology, 3(10), 640-649.

Blyszczuk, P., & Szekanecz, Z. (2020). Pathogenesis of ischaemic and non-ischaemic heart diseases in rheumatoid arthritis. RMD open, 6(1), e001032.

Bootcov, M. R., Bauskin, A. R., Valenzuela, S. M., Moore, A. G., Bansal, M., He, X. Y., ... & Breit, S. N. (1997). MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proceedings of the National Academy of Sciences, 94(21), 11514-11519.

Böttiger, Svedberg, C. A. (1967). Normal erythrocyte sedimentation rate and age. British medical journal, 2(5544), 85.

Brigden, M. L. (1999). Clinical utility of the erythrocyte sedimentation rate. American family physician, 60(5), 1443-1450.

Brown, D. A., Moore, J., Johnen, H., Smeets, T. J., Bauskin, A. R., Kuffner, T., ... & Breit, S. N. (2007). Serum macrophage inhibitory cytokine 1 in rheumatoid arthritis: a potential marker of erosive joint destruction. Arthritis & Rheumatism, 56(3), 753-764.

Castrejón, I., Ortiz, A. M., Garcia-Vicuna, R., Lopez-Bote, J. P., Humbría, A., Carmona, L., & Gonzalez-Alvaro, I. (2008). Are the C-reactive protein values and erythrocyte sedimentation rate equivalent when estimating the 28-joint disease activity score in rheumatoid arthritis?. Clinical & Experimental Rheumatology, 26(5), 769.

Conforti, A., Di Cola, I., Pavlych, V., Ruscitti, P., Berardicurti, O., Ursini, F., ... & Cipriani, P. (2021). Beyond the joints, the extra-articular manifestations in rheumatoid arthritis. Autoimmunity reviews, 20(2), 102735.

Coutant, F., & Miossec, P. (2020). Evolving concepts of the pathogenesis of rheumatoid arthritis with focus on the early and late stages. Current opinion in rheumatology, 32(1), 57-63.

Crowson, C. S., Rahman, M. U., & Matteson, E. L. (2009). Which measure of inflammation to use? A comparison of erythrocyte sedimentation rate and C-reactive protein measurements from randomized clinical trials of golimumab in rheumatoid arthritis. The Journal of Rheumatology, 36(8), 1606-1610.

Cure, E., Icli, A., Uslu, A. U., Sakiz, D., Cure, M. C., Baykara, R. A., ... & Kucuk, A. (2018). Atherogenic index of plasma: a useful marker for subclinical atherosclerosis in ankylosing spondylitis: AIP associate with cIMT in AS. Clinical rheumatology, 37, 1273-1280.

Deane, K. D., Demoruelle, M. K., Kelmenson, L. B., Kuhn, K. A., Norris, J. M., & Holers, V. M. (2017). Genetic and environmental risk factors for rheumatoid arthritis. Best practice & research Clinical rheumatology, 31(1), 3-18.

Dessie, G. (2022). Association of atherogenic indices with C-reactive protein and risk factors to assess cardiovascular risk in rheumatoid arthritis patient at Tikur Anbessa Specialized Hospital, Addis Ababa. Plos one, 17(6), e0269431.

Dessie, G., Tadesse, Y., Demelash, B., & Genet, S. (2020). Assessment of serum lipid profiles and high-sensitivity C-reactive protein among patients suffering from rheumatoid arthritis at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia: a cross-sectional study. Open Access Rheumatology: Research and Reviews, 223-232.

di Candia, A. M., de Avila, D. X., Moreira, G. R., Villacorta, H., & Maisel, A. S. (2021). Growth differentiation factor-15, a novel systemic biomarker of oxidative stress, inflammation, and cellular aging: Potential role in cardiovascular diseases. American Heart Journal Plus: Cardiology Research and Practice, 9, 100046.

Dobiasova, M. (2006). AIP--atherogenic index of plasma as a significant predictor of cardiovascular risk: from research to practice. Vnitrni lekarstvi, 52(1), 64-71.

Doerstling, S., Hedberg, P., Öhrvik, J., Leppert, J., & Henriksen, E. (2018). Growth differentiation factor 15 in a community-based sample: age-dependent reference limits and prognostic impact. Upsala journal of medical sciences, 123(2), 86-93.

Drechsler, M., Megens, R. T., van Zandvoort, M., Weber, C., & Soehnlein, O. (2010). Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation, 122(18), 1837-1845.

El Shebiny, E., El Sabbagh, A., Shoeib, S., Elnoamany, S., Wahb, R., Mohamed, S., ... & Zahran, E. (2022). Growth differentiation factor 15: a possible link between rheumatoid arthritis and atherosclerosis. Menoufia Medical Journal, 35(4), 1787.

Elbarky, E. M., Hussien, M. I., Elgazzar, N. M., Mabrouk, M. M., & Elsaadany, H. M. (2021). Serum growth differentiation factor-15 (GDF-15) level in behcet's disease patients: Relation to clinical characteristics, musculoskeletal ultrasound findings and disease activity. The Egyptian Rheumatologist, 43(3), 261-266.

Erum, U., Ahsan, T., & Khowaja, D. (2017). Lipid abnormalities in patients with Rheumatoid Arthritis. Pakistan journal of medical sciences, 33(1), 227.

Esalatmanesh, K., Fayyazi, H., Esalatmanesh, R., & Khabbazi, A. (2020). The association between serum levels of growth differentiation factor-15 and rheumatoid arthritis activity. International Journal of Clinical Practice, 74(9), e13564.

Figus, F. A., Piga, M., Azzolin, I., McConnell, R., & Iagnocco, A. (2021). Rheumatoid arthritis: extra-articular manifestations and comorbidities. Autoimmunity reviews, 20(4), 102776.

Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry, 18(6), 499-502.

Fujita, Y., Taniguchi, Y., Shinkai, S., Tanaka, M., & Ito, M. (2016). Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatrics & gerontology international, 16, 17-29.

Fujita, Y., Taniguchi, Y., Shinkai, S., Tanaka, M., & Ito, M. (2016). Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatrics & gerontology international, 16, 17-29.

Gilmour, D., & Sykes, A. J. (1951). Westergren and Wintrobe methods of estimating ESR compared. British medical journal, 2(4746), 1496.

Gorial, F., Ahmad, W. S., & Abbood, H. S. (2021). Prevalence and impact of fibromyalgia on disease activity in a sample of Iraqi patients with rheumatoid arthritis. Archives of Medical Science-Civilization Diseases, 6(1), 125-131.

Hajian-Tilaki, K., Heidari, B., & Bakhtiari, A. (2020). Triglyceride to high-density lipoprotein cholesterol and low-density lipoprotein cholestrol to high-density lipoprotein cholesterol ratios are predictors of cardiovascular risk in Iranian adults: Evidence from a population-based cross-sectional study. Caspian journal of internal medicine, 11(1), 53.

Halacoglu, J., & Shea, L. A. (2020). Cardiovascular risk assessment and therapeutic implications in rheumatoid arthritis. Journal of cardiovascular translational research, 13(5), 878-890.

Hannawi, S., Hannawi, H., & Al Salmi, I. (2020). Cardiovascular disease and subclinical atherosclerosis in rheumatoid arthritis. Hypertension Research, 43(9), 982-984.

Hassan, S. B., Abdullah, H. N., & Zakair, K. Y. (2022). The Role of IL-37 as an Anti-Inflammatory Biomarker in some Iraqi Rheumatoid Arthritis Patients and Its Correlation with DAS28. Journal of Techniques, 4(Special Issue), 123-127.

He, Y. W., & He, C. S. (2022). Association of growth and differentiation factor 15 in rheumatoid arthritis. Journal of Inflammation Research, 1173-1181.

Higashi, Y., Sukhanov, S., Anwar, A., Shai, S. Y., & Delafontaine, P. (2012). Aging, atherosclerosis, and IGF-1. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 67(6), 626-639.

Ho, J. E., Mahajan, A., Chen, M. H., Larson, M. G., McCabe, E. L., Ghorbani, A., ... & Wang, T. J. (2012). Clinical and genetic correlates of growth differentiation factor 15 in the community. Clinical chemistry, 58(11), 1582-1591.

Ji, X., Zhao, L., Ji, K., Zhao, Y., Li, W., Zhang, R., ... & Yan, C. (2017). Growth differentiation factor 15 is a novel diagnostic biomarker of mitochondrial diseases. Molecular neurobiology, 54, 8110-8116.

Jiang, J., Wen, W., & Sachdev, P. S. (2016). Macrophage inhibitory cytokine-1/growth differentiation factor 15 as a marker of cognitive ageing and dementia. Current opinion in psychiatry, 29(2), 181-186.

Jiang, W. W., Zhang, Z. Z., He, P. P., Jiang, L. P., Chen, J. Z., Zhang, X. T., ... & Ouyang, X. P. (2021). Emerging roles of growth differentiation factor 15 in brain disorders. Experimental and Therapeutic Medicine, 22(5), 1-11.

Karahan, A. Y., Kucuk, A. D. E. M., Balkarli, A. Y. S. E., Kayhan, F., Ozhan, N., Nas, O., ... & Kucuksen, S. (2016). Alexithymia, depression, anxiety levels and quality of life in patients with rheumatoid arthritis. Acta Medica Mediterranea, 32, 1021-28.

Kempf, T., Guba-Quint, A., Torgerson, J., Magnone, M. C., Haefliger, C., Bobadilla, M., & Wollert, K. C. (2012). Growth differentiation factor 15 predicts future insulin resistance and impaired glucose control in obese nondiabetic individuals: results from the XENDOS trial. European Journal of Endocrinology, 167(5), 671-678.

Khadim, R. M., & Al-Fartusie, F. S. (2021, March). Evaluation of liver function and lipid profiles in Iraqi patients with rheumatoid arthritis. In Journal of Physics: Conference Series (Vol. 1853, No. 1, p. 012040). IOP Publishing.

Khalil, M. E., Elhanafy, M. S., Eigela, S. E., Nasr, H. E., & ELgendy, M. E. (2020). Serum GDF-15 Level in Rheumatoid Arthritis and Relation to Disease Activity and Severity. Benha Journal of Applied Sciences, 5(4 part (1)), 131-134.

Khater, E. S., & Al Sheik, M. F. (2022). Clinical implications of autoantibodies to extractable nuclear antigens in rheumatoid arthritis patients in tertiary care hospital in Riyadh, Saudi Arabia. Egypt J Immunol, 29(2), 87-95.

Korkmaz, S., sirin, F. B., Ayvaz çelik, H. H., Erturan, I., &Yildirim, M. (2022). Could growth differentiation factor-15 be a new inflammatory pathway in psoriasis vulgaris. Medical Journal of Suleyman Demirel University, 29(4).

Kugyelka, R., Kohl, Z., Olasz, K., Mikecz, K., Rauch, T. A., Glant, T. T., & Boldizsar, F. (2016). Enigma of IL-17 and Th17 cells in rheumatoid arthritis and in autoimmune animal models of arthritis. Mediators of inflammation, 2016.  https://doi.org/10.1155/2016/6145810.

Kypreos, K. E., Bitzur, R., Karavia, E. A., Xepapadaki, E., Panayiotakopoulos, G., & Constantinou, C. (2019). Pharmacological management of dyslipidemia in atherosclerosis: limitations, challenges, and new therapeutic opportunities. Angiology, 70(3), 197-209.

Lee, J. E., Kim, I. J., Cho, M. S., & Lee, J. (2017). A case of rheumatoid vasculitis involving hepatic artery in early rheumatoid arthritis. Journal of Korean medical science, 32(7), 1207.

Lopez, J. (2013). Carl A. Burtis, Edward R. Ashwood and David E. Bruns (eds): Tietz Textbook of Clinical Chemistry and Molecular Diagnosis Elsevier, St. Louis, USA, 2012, 2238 pp, 909 illustrations. ISBN: 978-1-4160-6164-9.

Luma Qasim Ali, Firas Salih Abdulhadi, Ban Talib El-Haboby et al., (2024). Postmenopausal Hormone, Hematology and Immune Modulation in Rheumatoid Arthritis Patients, Journal of Angiotherapy, 8(3), 1-9, 9587

Madhuvan, H. S., Rangaswamaiah, H., & Manigandan, C . (2022). Association of adiponectin levels with disease activity score, RA factor and ESR in rheumatoid arthritis patients.

Mahdi, K. S., Hussein, D. M., Dabbi, M. A., Al-Imari, M. J., Obaid, R. H., Hamad, M. H., ... & Abdulabbas, H. S. (2023). The Correlation Study between Rheumatoid Arthritis and Obesity in Babylon Province. The Egyptian Journal of Hospital Medicine, 90(1), 401-406.

Mahtta, D., Gupta, A., Ramsey, D. J., Al Rifai, M., Mehta, A., Krittanawong, C., ... & Virani, S. S. (2020). Autoimmune rheumatic diseases and premature atherosclerotic cardiovascular disease: an analysis from the VITAL registry. The American Journal of Medicine, 133(12), 1424-1432.

McInnes, I. B., & Schett, G. (2007). Cytokines in the pathogenesis of rheumatoid arthritis. Nature Reviews Immunology, 7(6), 429-442.

Mohammed, N. U. G., Khaleel, F. M., & Gorial, F. I. (2022). The role of serum chitinase-3-like 1 protein (YKL-40) level and its correlation with proinflammatory cytokine in patients with rheumatoid arthritis. Baghdad Science Journal, 19(5), 1014-1014.

Mohammed, T. S., Maroof, R. E., & Al-Hafidh, A. H. (2022). Rheumatoid Arthritis Effects on Kidney and Liver and their Correlations with CDAI. Journal of Techniques, 4(Special Issue), 116-122.

Park, Y. J., Cho, C. S., Emery, P., & Kim, W. U. (2013). LDL cholesterolemia as a novel risk factor for radiographic progression of rheumatoid arthritis: a single-center prospective study. PloS one, 8(7), e68975.

Piva, S. J., Duarte, M. M., Da Cruz, I. B., Coelho, A. C., Moreira, A. P. L., Tonello, R., ... & Moresco, R. N. (2011). Ischemia-modified albumin as an oxidative stress biomarker in obesity. Clinical biochemistry, 44(4), 345-347.

Poddar, A., Behera, D. D., & Ray, S. (2016). Serum alkaline phosphatase activity & serum calcium levels: an assessment tool for disease activity in rheumatoid arthritis. IJBAMR, 5(4), 1324.

Popa, C. D., Arts, E., Fransen, J., & van Riel, P. L. (2012). Atherogenic index and high-density lipoprotein cholesterol as cardiovascular risk determinants in rheumatoid arthritis: the impact of therapy with biologicals. Mediators of inflammation, 2012.  https://doi.org/10.1155/2012/785946.

Popescu, D., Rezus, E., Badescu, M. C., Dima, N., Seritean Isac, P. N., Dragoi, I. T., & Rezus, C. (2023). Cardiovascular risk assessment in rheumatoid arthritis: accelerated atherosclerosis, new biomarkers, and the effects of biological therapy. Life, 13(2), 319.

Ralston, S. H., Penman, I. D., Strachan, M. W., & Hobson, R. (Eds.). (2018). Davidson's Principles and Practice of Medicine: Davidson's Principles and Practice of Medicine E-Book. Elsevier Health Sciences.

Rezu?, E., Macovei, L. A., Burlui, A. M., Cardoneanu, A., & Rezu?, C. (2021). Ischemic heart disease and rheumatoid arthritis—two conditions, the same background. Life, 11(10), 1042.

Rørholm Pedersen, L., Frestad, D., Mide Michelsen, M., Dam Mygind, N., Rasmusen, H., Elena Suhrs, H., & Prescott, E. (2016). Risk factors for myocardial infarction in women and men: a review of the current literature. Current pharmaceutical design, 22(25), 3835-3852.

Scherer, H. U., Häupl, T., & Burmester, G. R. (2020). The etiology of rheumatoid arthritis. Journal of autoimmunity, 110, 102400.

Schettler, G., & Nussel, E. (1975). Method for triglycerides. Aeb. Med. Soz. Med. Prav. Med, 10(25).

Schwarz, A., Kinscherf, R., & Bonaterra, G. A. (2023). Role of the Stress-and Inflammation-Induced Cytokine GDF-15 in Cardiovascular Diseases: From Basic Research to Clinical Relevance. Reviews in Cardiovascular Medicine, 24(3), 81.

Shafaghi, A., Mansour-Ghanaei, F., Rostamnejad, M., Maafi, A. A., Haji-Abbasi, A., & Froutan, H. (2014). Anti-cyclic citrullinated peptide antibodies in ulcerative colitis, and its relation with disease activity. Medical Journal of the Islamic Republic of Iran, 28, 76.

Shen, R., Ren, X., Jing, R., Shen, X., Chen, J., Ju, S., & Yang, C. (2015). Rheumatoid factor, anti-cyclic citrullinated peptide antibody, C-reactive protein, and erythrocyte sedimentation rate for the clinical diagnosis of rheumatoid arthritis. Laboratory medicine, 46(3), 226-229.

Simm, A., Nass, N., Bartling, B., Hofmann, B., Silber, R. E., & Navarrete Santos, A. (2008). Potential biomarkers of ageing.

Skogh, T., Gustafsson, D., Kjellberg, M., & Husberg, M. (2003). Twenty eight joint count disease activity score in recent onset rheumatoid arthritis using C reactive protein instead of erythrocyte sedimentation rate. Annals of the rheumatic diseases, 62(7), 681-682.

Spanakis, E., Sidiropoulos, P., Papadakis, J., Ganotakis, E., Katsikas, G., Karvounaris, S., ... & Boumpas, D. T. (2006). Modest but sustained increase of serum high density lipoprotein cholesterol levels in patients with inflammatory arthritides treated with infliximab. The Journal of Rheumatology, 33(12), 2440-2446.

Sproston, N. R., & Ashworth, J. J. (2018). Role of C-reactive protein at sites of inflammation and infection. Frontiers in immunology, 9, 342848.

Sulaiman, F. N., Wong, K. K., Ahmad, W. A. W., & Ghazali, W. S. W. (2019). Anti-cyclic citrullinated peptide antibody is highly associated with rheumatoid factor and radiological defects in rheumatoid arthritis patients. Medicine, 98(12), e14945.

Swirski, F. K., Libby, P., Aikawa, E., Alcaide, P., Luscinskas, F. W., Weissleder, R., & Pittet, M. J. (2007). Ly-6C hi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. The Journal of clinical investigation, 117(1), 195-205.

Tanrikulu, O., Sariyildiz, M. A., Batmaz, I., Yazmalar, L., Polat, N., Kaplan, I., & Çevik, R. (2017). Serum GDF-15 level in rheumatoid arthritis: relationship with disease activity and subclinical atherosclerosis. Acta reumatologica portuguesa, (1).

Targonska-Stepniak, B., Piotrowski, M., Zwolak, R., Drelich-Zbroja, A., & Majdan, M. (2018). Prospective assessment of cardiovascular risk parameters in patients with rheumatoid arthritis. Cardiovascular ultrasound, 16, 1-8.

Taskinen, M. R. (2003). Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia, 46, 733-749.

Tecer, D., Sunar, I., Ozdemirel, A. E., Tural, R., Kucuksahin, O., Dincel, A. S., & Ataman, S. (2019). Usefullnes of atherogenic indices and Ca-LDL level to predict subclinical atherosclerosis in patients with psoriatic arthritis?. Advances in Rheumatology, 59, 49.

Tishkowski, K., & Gupta, V. (2020). Erythrocyte sedimentation rate.

Toosi, T. D., Rostamiyan, A., Moharrami, K., Movassaghi, S., Nakhjavani, M., & Norooznezhad, A. H. (2018). Lipid profile changes in rheumatoid arthritis patients: Investigation of different affecting factors. Acta Medica Iranica, 665-670.

Turesson, C., Jacobsson, L. T., & Matteson, E. L. (2008). Cardiovascular co-morbidity in rheumatic diseases. Vascular health and risk management, 4(3), 605-614.

Tziomalos, K., Athyros, V. G., Karagiannis, A., Kolovou, G. D., & Mikhailidis, D. P. (2009). Triglycerides and vascular risk: insights from epidemiological data and interventional studies. Current drug targets, 10(4), 320-327.

Unsicker, K., Spittau, B., & Krieglstein, K. (2013). The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine & growth factor reviews, 24(4), 373-384.

Urman, A., Taklalsingh, N., Sorrento, C., & McFarlane, I. M. (2018). Inflammation beyond the joints: rheumatoid arthritis and cardiovascular disease. Scifed J Cardiol, 2(3), 1000019.

Venetsanopoulou, A. I., Pelechas, E., Voulgari, P. V., & Drosos, A. A. (2020). The lipid paradox in rheumatoid arthritis: the dark horse of the augmented cardiovascular risk. Rheumatology international, 40(8), 1181-1191.

Vergès, B. (2015). Pathophysiology of diabetic dyslipidaemia: where are we?. Diabetologia, 58(5), 886-899.

Vila, G., Riedl, M., Anderwald, C., Resl, M., Handisurya, A., Clodi, M., ... & Luger, A. (2011). The relationship between insulin resistance and the cardiovascular biomarker growth differentiation factor-15 in obese patients. Clinical Chemistry, 57(2), 309-316.

Ward, M. M. (2004). Relative sensitivity to change of the erythrocyte sedimentation rate and serum C-reactive protein concentration in rheumatoid arthritis. The Journal of Rheumatology, 31(5), 884-895.

Wilson, P. W. (1998). Why treat dyslipidemia?. Saudi medical journal, 19(4), 376-381.

Xia, T., Zheng, X. F., Qian, B. H., Fang, H., Wang, J. J., Zhang, L. L., ... & Zhao, D. B. (2015). Plasma interleukin-37 is elevated in patients with rheumatoid arthritis: its correlation with disease activity and Th1/Th2/Th17-related cytokines. Disease markers, 2015.

Xiao, Q. A., He, Q., Zeng, J., & Xia, X. (2022). GDF-15, a future therapeutic target of glucolipid metabolic disorders and cardiovascular disease. Biomedicine & Pharmacotherapy, 146, 112582.

Xu, W. D., Su, L. C., He, C. S., & Huang, A. F. (2018). Plasma interleukin-38 in patients with rheumatoid arthritis. International immunopharmacology, 65, 1-7.

Xu, W. D., Wu, Q., He, Y. W., Huang, A. F., Lan, Y. Y., Fu, L., ... & Liu, X. Y. (2021). Gene polymorphisms of LGALS2, LGALS3 and LGALS9 in patients with rheumatoid arthritis. Cellular Immunology, 368, 104419.

Yalcin, M. M., Altinova, A. E., Akturk, M., Gulbahar, O., Arslan, E., Ors Sendogan, D., ... & Toruner, F. B. (2016). GDF-15 and hepcidin levels in nonanemic patients with impaired glucose tolerance. Journal of Diabetes Research, 2016.

Yan, J., Yang, S., Han, L., Ba, X., Shen, P., Lin, W., ... & Chen, Z. (2023). Dyslipidemia in rheumatoid arthritis: the possible mechanisms. Frontiers in Immunology, 14, 1254753.

Yap, H. Y., Tee, S. Z. Y., Wong, M. M. T., Chow, S. K., Peh, S. C., & Teow, S. Y. (2018). Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development. Cells, 7(10), 161.

Yap, H. Y., Tee, S. Z. Y., Wong, M. M. T., Chow, S. K., Peh, S. C., & Teow, S. Y. (2018). Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development. Cells, 7(10), 161.

Yu, C., Liu, C., Jiang, J., Li, H., Chen, J., Chen, T., & Zhan, X. (2020). Gender differences in rheumatoid arthritis: interleukin-4 plays an important role. Journal of immunology research, 2020.

Yücel, H. E., & Ilanbey, B. (2022). The relationship of Growth differentiation factor-15 with renal damage and dyslipidemia in non-albuminuric and albuminuric Type-2 Diabetes Mellitus. Medical Science and Discovery, 9(6), 334-339.

Zayed, N. S., Obaid, R. F., & Hamza, A. A. (2022). Association Of Cellular Communication Network Factor 3 (CCN3) With Rheumatoid Arthritis Disease And It's Severity (Case-Control Study). Medical Science Journal for Advance Research, 3(4), 201-208.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
427
View
0
Share