Angiogenesis, Inflammation & Therapeutics | Impact 0.1 (CiteScore) | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Antibacterial Activity of Herbal Essential Oils against Gram-positive and Gram-negative Bacteria with a Potential for Multidrug Resistance

Abdulah Y. Al-Mahdi 1, Alabed Ali A. Alabed 2, Hana W. Jun Chen1, Mohammed Faez Baobaid 1, Sakina Ruhi 1, Jegathambigai Rameshwar Naidu 1, Mukti Nor Ashikeen 1, Husni Ahmed Abdullah Al-Goshae 1, Imad I. Al-Sultan1, Mahfoud A.M. Abdulghani 1, Abusif Sonousi 3, Elan Selvi Anandan 4, Belqes Hamood Serag 5

+ Author Affiliations

Journal of Angiotherapy 8(2) 1-7 https://doi.org/10.25163/angiotherapy.829517

Submitted: 03 January 2024  Revised: 26 February 2024  Published: 28 February 2024 

This research showed that essential oils derived from medicinal plants are antibiotic-resistant by exhibiting strong antibacterial activity against multidrug-resistant pathogens, suggesting potential alternative options against antibiotic resistance.

Abstract


Background: In recent years, there has been an extensive and great interest in researching and developing alternative antibacterial agents from various sources to combat bacterial resistance. Therefore, greater attention has been paid to the screening of antibacterial activity. Aims: This study evaluated different types of herbal essential oil to inhibit the growth of selected human pathogenic bacteria with potential multidrug resistance properties. Methodology: The herbal essential oils used include thyme oil, tea tree oil, bergamot oil and lavender oil against Staphylococcus aureus, Escherichia coli and Bacillus subtilis. Antibacterial screening of all the essential oils was done by disk diffusion method. Results: Herbal essential oils have exhibited a broad spectrum of antibacterial activities against the selected microbes: B. subtilis, S. aureus and E. coli. Thyme oil has the most potential antibacterial properties for B. subtilis(40 mm), followed by S. aureus(35 mm) and E. coli(35 mm). Both bergamot and lavender oils showed higher antibacterial effects for E. coli and B. subtilis but have lower efficacy with S. aureus than tea tree oil. Conclusion: The herbal essential oils used in this study can serve as a source of alternative antibacterial agents and may play an important role in the discovery of new drugs for the treatment of a wide range of pathogenic bacteria in the future.

Keywords:  Antibacterial activity; Bacillus subtilis; Staphylococcus aureus; Escherichia coli; essential oils; herbs; thyme; tea tree; lavender; bergamot

References


Abdalqader M. A., Baobaid, M. F., Ghazi, H. F., Hasan, T. N., Mohammed, M. F., Abdalrazak, H. A., … Wei Jun, H.C. (2020). The Malaysian Movement Control Order (MCO) Impact and Its Relationship with Practices towards Coronavirus Disease 2019 (COVID-19) among a Private University Students in Selangor. Malaysian Journal of Public Health Medicine, 20(2), 49–55. https://doi.org/10.37268/mjphm/vol.20/no.2/art.523

Al-Haj, N. , Reem, A. , Al-Shamahy, H. , Al-Moyed, K. , Bahaj, S. and Jaber, A. (2019) Antimicrobial Activity of Five Yemeni Medicinal Plants against Selected Human Pathogenic Bacteria and Fungi. American Journal of Plant Sciences, 10, 1699-1707. https://doi.org/10.4236/ajps.2019.1010121.

Almola, B. A., Zakaria, S., & Al-Ni'ma, Z. S. (2016). Antibacterial Effect of Some Iraqi Lichen Extracts. International Journal of Science and Technology, 5(9).

Boadu, A. A., & Asase, A. (2017). Documentation of Herbal Medicines Used for the Treatment and Management of Human Diseases by Some Communities in Southern Ghana. Evidence-based complementary and alternative medicine : eCAM, 2017, 3043061. https://doi.org/10.1155/2017/3043061

Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial Activity of Some Essential Oils-Present Status and Future Perspectives. Medicines (Basel, Switzerland), 4(3), 58. https://doi.org/10.3390/medicines4030058

Clinical and Laboratory Standards Institute. (2020). Performance standards for antimicrobial disk susceptibility tests (30th ed.). Wayne, PA.

Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, 12, 3903-3910. https://doi.org/10.2147/IDR.S234610

Hiba Ahmed Jawade, Zahraa Yosif Motaweq, Hawraa Dheyaa Rasool et al. (2024). Study of Antibiotic Resistance in ESKAPE Bacteria Using β-lactamase and ESBL Genes, Journal of Angiotherapy, 8(3), 1-8, 9618.

Hossain, S., Heo, H., De Silva, B. C. J., Wimalasena, S. H. M. P., Pathirana, H. N. K. S., & Heo, G. J. (2017). Antibacterial activity of essential oil from lavender (Lavandula angustifolia) against pet turtle-borne pathogenic bacteria. Laboratory animal research, 33(3), 195–201. https://doi.org/10.5625/lar.2017.33.3.195

Jun Chen, H. W., Marzo, R. R., Tang, H. C., Mawazi, S. M., & Essar, M. Y. (2022). One Mutation Away, the Potential Zoonotic Threat - Neocov, Planetary Health Impacts and the Call for Sustainability. Journal of public health research, 10(1 Suppl), jphr.2021.2941. https://doi.org/10.4081/jphr.2021.2941

Kwiatkowski, P., Lopusiewicz, L., Kostek, M., Drozlowska, E., Pruss, A., Wojciuk, B., Sienkiewicz, M., Zielinska-Blizniewska, H., & Dolegowska, B. (2019). The Antibacterial Activity of Lavender Essential Oil Alone and In Combination with Octenidine Dihydrochloride against MRSA Strains. Molecules (Basel, Switzerland), 25(1), 95. https://doi.org/10.3390/molecules25010095

Li, B., & Webster, T. J. (2018). Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 36(1), 22–32. https://doi.org/10.1002/jor.23656

Lim, A. C., Tang, S. G. H., Zin, N. M., Maisarah, A. M., Ariffin, I. A., Ker, P. J., & Mahlia, T. M. I. (2022). Chemical Composition, Antioxidant, Antibacterial, and Antibiofilm Activities of Backhousia citriodora Essential Oil. Molecules (Basel, Switzerland), 27(15), 4895. https://doi.org/10.3390/molecules27154895

Mariam Ayad Abd, Sawsan Q. T. Al-Quhli, Mahir Ali Jassim, (2024). Salmonella Biofilms And Antibiotic Resistance Determination From Different Patient Types, Journal of Angiotherapy, 8(2), 1-11, 9502.

Muntaha R. Ibraheem, Dhafar N. Al-Ugaili. (2024). Nanoparticle-Mediated Plasmid Curing in Combating Antibiotic Resistance in Pathogenic Bacteria, Journal of Angiotherapy, 8(3), 1-8, 9495.

Najimudeen, M., Jun Chen, H. W., Jamaluddin, N. A., Myint, M. H., & Marzo, R. R. (2022). Monkeypox in Pregnancy: Susceptibility, Maternal and Fetal Outcomes, and One Health Concept. International Journal of Maternal and Child Health and AIDS, 11(2). https://doi.org/10.21106/ijma.594

Nwonu, C., Ilesanmi, O., Agbedahunsi, J., & Nwonu, P. (2019). Natural products as veritable source of novel drugs and medicines: A review. International Journal of Herbal Medicine, 7(1), 50–54.

Okeke, I. N., Laxminarayan, R., Bhutta, Z. A., Duse, A. G., Jenkins, P., O'Brien, T. F., Pablos-Mendez, A., & Klugman, K. P. (2005). Antimicrobial resistance in developing countries. Part I: recent trends and current status. The Lancet. Infectious diseases, 5(8), 481–493. https://doi.org/10.1016/S1473-3099(05)70189-4

Pancu, D. F., Buzatu, R., Milutinovici, R., Iurciuc, S., Dolghi, A., & Poenaru, M. (2022). Assessment of the Biological Activity of Thyme Essential Oil in the Presence of the Classic Antibiotic Tetracycline. Current health sciences journal, 48(1), 18–23. https://doi.org/10.12865/CHSJ.48.01.02

Rashid, N., Paul, A. A., Islam, S., Sajib, S. A., Nasirujjaman, K., Hoque, K. M. F., & Reza, M. A. (2017). Studies on Antioxidant Potential, Phytochemical Properties and Toxicity of Four Popular Medicinal Plants of Bangladesh. Journal of Biological Sciences, 25, 27–37.

Salem, S. S., Elsayed, H. E., Shabana, S., Khazaal, M. T., & Moharram, F. A. (2023). Phytochemical profile and antimicrobial activity of essential oils from two Syzygium species against selected oral pathogens. BMC complementary medicine and therapies, 23(1), 448. https://doi.org/10.1186/s12906-023-04277-1

Singh, G., & Katoch, M. (2020). Antimicrobial activities and mechanism of action of Cymbopogon khasianus (Munro ex Hackel) Bor essential oil. BMC complementary medicine and therapies, 20(1), 331. https://doi.org/10.1186/s12906-020-03112-1

Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evidence-based complementary and alternative medicine : eCAM, 2016, 3012462. https://doi.org/10.1155/2016/3012462

Truong, S., & Mudgil, P. (2023). The antibacterial effectiveness of lavender essential oil against methicillin-resistant Staphylococcus aureus: a systematic review. Frontiers in pharmacology, 14, 1306003. https://doi.org/10.3389/fphar.2023.1306003

van Dijk, H. F. G., Verbrugh, H. A., & Ad hoc advisory committee on disinfectants of the Health Council of the Netherlands (2022). Resisting disinfectants. Communications medicine, 2, 6. https://doi.org/10.1038/s43856-021-00070-8

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
341
View
0
Share