Curcumin Nanocarriers with a Focus on Cellular Uptake Studies – An Innovative Cancer Therapy
Kalpita Bhatta 1, Pratikshya Mohanty 1, Itishree Jogamaya Das 2, Himansu Bhusan Samal *3
Journal of Angiotherapy 8(1) 1-17 https://doi.org/10.25163/angiotherapy.819388
Submitted: 25 November 2023 Revised: 26 December 2023 Published: 18 January 2024
Using curcumin nanocarriers could provide several benefits in combating cancers
Abstract
Once a dye, curcumin (CUR) has transformed into a versatile therapeutic agent with antioxidative, anti-inflammatory, and anticancer properties. Despite its potent anticancer effects, CUR encounters challenges such as poor solubility and a short circulation half-life. To address this, researchers utilize nanocarriers like nanoparticles, liposomes, and micelles for efficient CUR delivery. With its multifaceted anticancer activity, CUR holds promise as a cancer therapeutic. Recent studies concentrate on crafting nanocarriers tailored for size, charge, and functionalization, offering adaptable tools for combinational cancer therapy. The synergistic combination of CUR with chemotherapy, magnetic nano hyperthermia, or photodynamic therapy amplifies the efficacy of malignancy treatment. The investigation into CUR-loaded nanocarriers, whether used alone or in combination with other modalities, aims to enhance cancer treatment outcomes, highlighting the diverse potential of curcumin in contemporary therapeutic strategies. This research underscores the importance of combinational drug delivery therapies, providing a renewed perspective on the versatile applications of curcumin in modern medicine.
Keywords: Curcumin, Bioavailability, Nanocarriers, Anticancer Activity, Combined Therapy, Nano Hyperthermia
References
Abadi, A. J., Mirzaei, S., Mahabady, M. K., Hashemi, F., Zabolian, A., Hashemi, F., ... & Sethi, G. (2022). Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytotherapy Research, 36(1), 189-213.
Agrawal, N. D., Nirala, S. K., Bhadauria, M., Srivastava, S., & Shukla, S. (2019). Protective potential of Moringa oleifera Lam. along with curcumin and piperine against beryllium-induced alterations in hepatorenal biochemistry and ultramorphology in rats. Indian Journal of Biochemistry and Biophysics (IJBB), 56(1), 70-80.
Ak, T., & Gülçin, I. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-biological interactions, 174(1), 27-37.
Akter, T., Zahan, M. S., Nawal, N., Rahman, H., Tanjum, T. N., Arafat, K. I., ... & Uddin, M. J. (2023). Potentials of curcumin against polycystic ovary syndrome: Pharmacological insights and therapeutic promises. Heliyon,9,1-16.
Alibolandi, M., Hoseini, F., Mohammadi, M., Ramezani, P., Einafshar, E., Taghdisi, S. M., ... & Abnous, K. (2018). Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. International journal of pharmaceutics, 549(1-2), 67-75.
Alizadeh, A. M., Sadeghizadeh, M., Najafi, F., Ardestani, S. K., Erfani-Moghadam, V., Khaniki, M., ... & Mohagheghi, M. A. (2015). Encapsulation of curcumin in diblock copolymer micelles for cancer therapy. BioMed research international, 2015,1-14.
Allegra, A., Di Gioacchino, M., Tonacci, A., Musolino, C., & Gangemi, S. (2020). Immunopathology of SARS-CoV-2 infection: immune cells and mediators, prognostic factors, and immune-therapeutic implications. International journal of molecular sciences, 21(13), 1-13.
Almatroodi, S. A., Syed, M. A.,…& Rahmani, A. H. (2021). Potential therapeutic targets of Curcumin, most abundant active compound of turmeric spice: Role in the management of various types of cancer. Recent patents on anti-cancer drug discovery,16(1), 3-29.
Alven, S., & Aderibigbe, B. A. (2020). Efficacy of polymer-based nanocarriers for co-delivery of curcumin and selected anticancer drugs. Nanomaterials, 10(8), 1-28.
Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer letters, 267(1), 133-164.
Aromokeye, R., & Si, H. (2022). Combined Curcumin and Luteolin synergistically inhibit Colon Cancer Associated with Notch1 and TGF-β signaling pathways in cultured cells and xenograft mice. Cancers, 14(12), 1-14.
Asif, H. M., Zafar, F., Ahmad, K., Iqbal, A., Shaheen, G., Ansari, K. A., & Ghaffar, S. (2023). Synthesis, characterization and evaluation of anti-arthritic and anti-inflammatory potential of curcumin loaded chitosan nanoparticles. Scientific Reports, 13, 1-10.
Askarizadeh, A., Barreto, G. E., Henney, N. C., Majeed, M., & Sahebkar, A. (2020). Neuroprotection by curcumin: A review on brain delivery strategies. International Journal of Pharmaceutics, 585, 1-59.
Ayubi, M.; Karimi, M.; Abdpour, S.; Rostamizadeh, K.; Parsa, M.; Zamani, M.; Saedi, A. Magnetic nanoparticles decorated with PEGylated curcumin as dual targeted drug delivery: Synthesis, toxicity and biocompatibility study. Mater. Sci. Eng. C 2019, 104, 109810.
Bai, L., Xu, D., Zhou, Y. M., Zhang, Y. B., Zhang, H., Chen, Y. B., & Cui, Y. L. (2022). Antioxidant activities of natural polysaccharides and their derivatives for biomedical and medicinal applications. Antioxidants, 11(12), 1-31.
Ban, C., Jo, M., Park, Y. H., Kim, J. H., Han, J. Y., Lee, K. W., ... & Choi, Y. J. (2020). Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food chemistry, 302, 125328.
Barzegar, A. (2012). The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food chemistry, 135(3), 1369-1376.
Barzegar, A., & Moosavi-Movahedi, A. A. (2011). Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PloS one, 6(10), 1-7.
Bhandarkar, S. S., Arbiser, J. L. (2007). Curcumin as an inhibitor of angiogenesis. The molecular targets and therapeutic uses of curcumin in health and disease, 595,185-195.
Bnyan, R., Khan, I., Ehtezazi, T., Saleem, I., Gordon, S., O'Neill, F., & Roberts, M. (2018). Surfactant effects on lipid-based vesicles properties. Journal of pharmaceutical sciences, 107(5), 1237-1246.
Boccellino, M., Ambrosio, P., Ballini, A., De Vito, D., Scacco, S., Cantore, S., ... & Di Domenico, M. (2022). The role of curcumin in prostate cancer cells and derived spheroids. Cancers, 14(14), 1-18.
Bratovcic, A. (2020). Antioxidant enzymes and their role in preventing cell damage. Acta Sci. Nutr. Health, 4, 1-7.
Cai, X. Z., Wang, J., Xiao-Dong, L., Wang, G. L., Liu, F. N., Cheng, M. S., & Li, F. (2009). Curcumin suppresses proliferation and invasion in human gastric cancer cells by down-regulation of PAK1 activity and cyclin D1 expression. Cancer biology & therapy, 8(14), 1360-1368.
Chen, H. W., Lee, J. Y., Huang, J. Y., Wang, C. C., Chen, W. J., Su, S. F., & Yang, P. C. (2008). Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer research, 68(18), 7428-7438.
Chen, X. P., Li, Y., Zhang, Y., & Li, G. W. (2019). Formulation, characterization and evaluation of curcumin-loaded PLGA-TPGS nanoparticles for liver cancer treatment. Drug design, development and therapy,13, 3569-3578.
Chen, Y., Deng, Y., Zhu, C., & Xiang, C. (2020). Anti-prostate cancer therapy: aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomedicine & Pharmacotherapy, 127, 1-8.
Chirio, D., Peira, E., Dianzani, C., Muntoni, E., Gigliotti, C. L., Ferrara, B., ... & Gallarate, M. (2019). Development of solid lipid nanoparticles by cold dilution of microemulsions: curcumin loading, preliminary in vitro studies, and biodistribution. Nanomaterials, 9(2), 1-17.
Choi, B. H., Kim, C. G., Lim, Y., Shin, S. Y., & Lee, Y. H. (2008). Curcumin down-regulates the multidrug-resistance mdr1b gene by inhibiting the PI3K/Akt/NFκB pathway. Cancer letters, 259(1), 111-118.
Chou, Y. T., Koh, Y. C., Nagabhushanam, K., Ho, C. T., & Pan, M. H. A natural degradant of curcumin, feruloyl acetone inhibits cell proliferation via inducing cell cycle arrest and a mitochondrial apoptotic pathway in HCT116 colon cancer cells. Molecules, 2021,26(16), 1-16.
Chuan, L. I., Zhang, J., Yu-Jiao, Z. U., Shu-Fang, N. I. E., Jun, C. A. O., Qian, W. A. N. G., ... & Shu, W. A. N. G. (2015). Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chinese journal of natural medicines, 13(9), 641-652.
Divya, C. S., Pillai, M. R. (2006) Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFκB and AP-1 translocation, and modulation of apoptosis. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 45, 320-332.
El-Saadony, M. T., Yang, T., Korma, S. A., Sitohy, M., El-Mageed, A., Taia, A., & Saad, A. M. (2023). Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Frontiers in Nutrition, 9, 1-34.
Feng, T., Wei, Y., Lee, R. J., & Zhao, L. (2017). Liposomal curcumin and its application in cancer. International journal of nanomedicine,12, 6027-6044.
Ghareghomi, S., Rahban, M., Moosavi-Movahedi, Z., Habibi-Rezaei, M., Saso, L., & Moosavi-Movahedi, A. A. (2021). The potential role of curcumin in modulating the master antioxidant pathway in diabetic hypoxia-induced complications. Molecules, 26(24), 1-26.
Ghasemi, F., Shafiee, M., Banikazemi, Z., Pourhanifeh, M. H., Khanbabaei, H., Shamshirian, A., & Mirzaei, H. (2019). Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathology-Research and Practice, 215(10), 1-21.
Guimarães, M. R., Coimbra, L. S., de Aquino, S. G., Spolidorio, L. C., Kirkwood, K. L., Rossa Jr, C. (2011). Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo. Journal of periodontal research, 46(2), 269-279.
Hafez Ghoran, S., Calcaterra, A., Abbasi, M., Taktaz, F., Nieselt, K., & Babaei, E. (2022). Curcumin-based Nano formulations: A promising adjuvant towards cancer treatment. Molecules, 27(16), 1-29.
Han, Z., Zhang, J., Zhang, K., & Zhao, Y. (2020). Curcumin inhibits cell viability, migration, and invasion of thymic carcinoma cells via downregulation of microRNA-27a. Phytotherapy Research, 34(7), 1629-1637.
Han, Z., Zhang, J., Zhang, K., Zhao, Y. (2020). Curcumin inhibits cell viability, migration, and invasion of thymic carcinoma cells via downregulation of microRNA-27a. Phytotherapy Research, 34(7), 1629-1637.
Hashemi, M., Mirzaei, S., Barati, M., Hejazi, E. S., Kakavand, A., Entezari, M., & Sethi, G. (2022). Curcumin in the treatment of urological cancers: Therapeutic targets, challenges and prospects. Life Sciences,309, 1-16.
Hatcher, H., Planalp, R., Cho, J., Torti, F. M., Torti, S. V. (2008). Curcumin: from ancient medicine to current clinical trials. Cellular and molecular life sciences, 65, 1631-1652.
Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A Review of Its Effects on Human Health. Foods (Basel, Switzerland), 6(10),92. https://doi.org/10.3390/foods6100092
Hsieh, M. T., Chang, L. C., Hung, H. Y., Lin, H. Y., Shih, M. H., Tsai, C. H., ... & Lee, K. H. (2017). New bis (hydroxymethyl) alkanoate curcuminoid derivatives exhibit activity against triple-negative breast cancer in vitro and in vivo. European Journal of Medicinal Chemistry, 131, 141-151.
Huang, T., Zhao, J., Guo, D., Pang, H., Zhao, Y., & Song, J. (2018). Curcumin mitigates axonal injury and neuronal cell apoptosis through the PERK/Nrf2 signalling pathway following diffuse axonal injury. Neuroreport, 29(8), 661-667.
Indira Priyadarsini, K. (2013). Chemical and structural features influencing the biological activity of curcumin. Current pharmaceutical design, 19(11), 2093-2100.
Jakubczyk, K., Druzga, A., Katarzyna, J., & Skonieczna-Zydecka, K. (2020). Antioxidant potential of curcumin—A meta-analysis of randomized clinical trials. Antioxidants, 9(11), 1-13.
Jia, G., Han, Y., An, Y., Ding, Y., He, C., Wang, X., & Tang, Q. (2018). NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials, 178, 302-316.
Jiang, K., Shen, M., & Xu, W. (2018). Arginine, glycine, aspartic acid peptide-modified paclitaxel and curcumin co-loaded liposome for the treatment of lung cancer: in vitro/vivo evaluation. International journal of nanomedicine,13, 2561-2569.
Jiang, K., Shen, M., & Xu, W. (2018). Arginine, glycine, aspartic acid peptide-modified paclitaxel and curcumin co-loaded liposome for the treatment of lung cancer: in vitro/vivo evaluation. International journal of nanomedicine, 2561-2569.
Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 1-21.
Jung, J., Ku, M., Jeong, S., Yoon, N., Park, J. H., Youn, H. S., ... & Seo, S. (2023). Antioxidative Impact of Phenolics-Loaded Nanocarriers on Cytoskeletal Network Remodelling of Invasive Cancer Cells. ACS Applied Materials & Interfaces, 15(29), 34462-34474.
Karimi, A., Pourreza, S., Vajdi, M., Mahmoodpoor, A., Sanaie, S., Karimi, M., & Tarighat-Esfanjani, A. (2022). Evaluating the effects of curcumin nanomicelles on clinical outcome and cellular immune responses in critically ill sepsis patients: A randomized, double-blind, and placebo-controlled trial. Frontiers in Nutrition, 9, 1-12.
Karthikeyan, A., Senthil, N., Min, T. (2020). Nanocurcumin: A promising candidate for therapeutic applications. Frontiers in Pharmacology, 11,1-24.
Katsori, A. M., Palagani, A., Bougarne, N., Hadjipavlou-Litina, D., Haegeman, G., & Vanden Berghe, W. (2015). Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue. Molecules, 20(1), 863-878.
Khan, K., Quispe, C., Javed, Z., Iqbal, M. J., Sadia, H., Raza, S., & Sharifi-Rad, J. (2020). Resveratrol, curcumin, paclitaxel and miRNAs mediated regulation of PI3K/Akt/mTOR pathway: go four better to treat bladder cancer. Cancer Cell International, 20, 1-19.
Khan, M. M., Madni, A., Tahir, N., Parveen, F., Khan, S., Jan, N., ... & Khan, M. I. (2020). Co-delivery of curcumin and cisplatin to enhance cytotoxicity of cisplatin using lipid-chitosan hybrid nanoparticles. International Journal of Nanomedicine,15, 2207-2217.
Kharat, P. B., Somvanshi, S. B., Khirade, P. P., & Jadhav, K. M. (2020). Induction heating analysis of surface-functionalized nanoscale CoFe2O4 for magnetic fluid hyperthermia toward noninvasive cancer treatment. ACS omega, 5(36), 23378-23384.
Klaunig, J. E. (2018). Oxidative stress and cancer. Current pharmaceutical design, 24(40), 4771-4778.
Kouhpeikar, H., Butler, A. E., Bamian, F., Barreto, G. E., Majeed, M., & Sahebkar, A. (2019). Curcumin as a therapeutic agent in leukemia. Journal of cellular physiology, 234(8), 12404-12414.
Kubczak, M., Szustka, A., & Rogalinska, M. (2021). Molecular targets of natural compounds with anti-cancer properties. International Journal of Molecular Sciences, 22(24), 1-27.
Kumbar, V. M., Muddapur, U., Bin Muhsinah, A., Alshehri, S. A., Alshahrani, M. M., Almazni, I. A., ... & Shaikh, I. A. (2022). Curcumin-encapsulated nanomicelles improve cellular uptake and cytotoxicity in cisplatin-resistant human oral cancer cells. Journal of Functional Biomaterials, 13(4), 1-22.
Kuo, Y. C., Wang, L. J., Rajesh, R. (2019). Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. Materials Science and Engineering: C, 102, 362-372.
Li, H., Zhang, N., Hao, Y., Wang, Y., Jia, S., Zhang, H., ... & Zhang, Z. (2014). Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Drug delivery, 21(5), 379-387.
Liu, Z., Zhu, Y. Y., Li, Z. Y., & Ning, S. Q. (2016). Evaluation of the efficacy of paclitaxel with curcumin combination in ovarian cancer cells. Oncology letters, 12(5), 3944-3948.
Lopes-Rodrigues, V., Sousa, E., & Vasconcelos, M. H. (2016). Curcumin as a modulator of P-glycoprotein in cancer: challenges and perspectives. Pharmaceuticals, 9(4), 1-11.
Mahmoud, K., Swidan, S., El-Nabarawi, M., & Teaima, M. (2022). Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: A comprehensive review on targeting and recent advances. Journal of Nanobiotechnology, 20(1), 1-42.
Mahmud, M., Piwoni, A., Filiczak, N., Janicka, M., & Gubernator, J. (2016). Long-circulating curcumin-loaded liposome formulations with high incorporation efficiency, stability and anticancer activity towards pancreatic adenocarcinoma cell lines in vitro. PloS one, 11(12), 1-23.
Mansouri, K., Rasoulpoor, S., Daneshkhah, A., Abolfathi, S., Salari, N., Mohammadi, M., ... & Shabani, S. (2020). Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC cancer, 20, 1-11.
Mundekkad, D.; Cho, W.C. Applications of Curcumin and Its Nanoforms in the Treatment of Cancer. Pharmaceutics 2023, 15, 2223. https://doi.org/10.3390/pharmaceutics15092223
Nagaraju, G. P., Benton, L., Bethi, S. R., Shoji, M., & El-Rayes, B. F. (2019). Curcumin analogs: Their roles in pancreatic cancer growth and metastasis. International Journal of Cancer, 145(1), 10-19.
Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The essential medicinal chemistry of curcumin: Mini perspective. Journal of medicinal chemistry, 60(5), 1620-1637.
Nguyen, N. M., Vu, D. M., Tran, M. D., & Ta, V. T. (2021). On-demand release of drug from magnetic nanoparticle-loaded alginate beads. Journal of Analytical Methods in Chemistry, 2021,1-7.
Paliwal, R., Paliwal, S. R., Kenwat, R., Kurmi, B. D., & Sahu, M. K. (2020). Solid lipid nanoparticles: A review on recent perspectives and patents. Expert opinion on therapeutic patents, 30(3), 179-194.
Pan, R., Zeng, Y., Liu, G., Wei, Y., Xu, Y., & Tao, L. (2020). Curcumin–polymer conjugates with dynamic boronic acid ester linkages for selective killing of cancer cells. Polymer Chemistry, 11(7), 1321-1326.
Parthiban, A., Sivasankar, R., Rajdev, B., Asha, R. N., Jeyakumar, T. C., Periakaruppan, R., & Naidu, V. G. M. (2022). Synthesis, in vitro, in silico and DFT studies of indole curcumin derivatives as potential anticancer agents. Journal of Molecular Structure, 1270, 1-30.
Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., ... & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology, 16(1), 1-33.
Purushothaman, B. K., Maheswari, P. U., & Begum, K. M. S. (2019). Magnetic assisted curcumin drug delivery using folate receptor targeted hybrid casein-calcium ferrite nanocarrier. Journal of Drug Delivery Science and Technology, 52, 509-520.
Rahmani, A. H., Alsahli, M. A., Aly, S. M., Khan, M. A., & Aldebasi, Y. H. (2018). Role of curcumin in disease prevention and treatment. Advanced biomedical research, 7,1-9.
Rao, W., Zhang, W., Poventud-Fuentes, I., Wang, Y., Lei, Y., Agarwal, P., ... & He, X. (2014). Thermally responsive nanoparticle-encapsulated curcumin and its combination with mild hyperthermia for enhanced cancer cell destruction. Acta Biomaterialia, 10(2), 831-842.
Rodrigues, F. C., Kumar, N. A., & Thakur, G. (2019). Developments in the anticancer activity of structurally modified curcumin: An up-to-date review. European journal of medicinal chemistry, 177, 76-104.
Sachithanandam, V., Lalitha, P., Parthiban, A., Muthukumaran, J., Jain, M., Misra, R., ... & Ramesh, R. (2022). A comprehensive in silico and in vitro studies on quinizarin: A promising phytochemical derived from Rhizophora mucronata Lam. Journal of Biomolecular Structure and Dynamics, 40(16), 7218-7229.
Sadeghi-Abandansari, H., Pakian, S., Nabid, M. R., Ebrahimi, M., & Rezalotfi, A. (2021). Local co-delivery of 5-fluorouracil and curcumin using Schiff's base cross-linked injectable hydrogels for colorectal cancer combination therapy. European Polymer Journal, 157, 1-13.
Sahebkar, A., Serban, M. C., Ursoniu, S., & Banach, M. (2015). Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Journal of functional foods, 18, 898-909.
Salahshoor, M., Mohamadian, S., Kakabaraei, S., Roshankhah, S., & Jalili, C. (2016). Curcumin improves liver damage in male mice exposed to nicotine. Journal of traditional and complementary medicine, 6(2), 176-183.
Samarghandian, S., Azimi-Nezhad, M., Farkhondeh, T., & Samini, F. (2017). Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomedicine & Pharmacotherapy, 87, 223-229.
Satyabhama, M., Priya Dharshini, L. C., Karthikeyan, A., Kalaiselvi, S., & Min, T. (2022). The Credible Role of Curcumin in Oxidative Stress-Mediated Mitochondrial Dysfunction in Mammals. Biomolecules, 12(10), 1-15.
Senturk, F. (2023). Hyperthermia efficacy of PEGylated-PLGA coated monodisperse iron oxide nanoparticles. Hittite Journal of Science and Engineering, 10(2), 153-159.
Senturk, F., & Cakmak, S. (2023). Fabrication of curcumin-loaded magnetic PEGylated-PLGA nanocarriers tagged with GRGDS peptide for improving anticancer activity. MethodsX, 10, 1-11.
Senturk, F., Çakmak, S., & Ozturk, G. G. (2019). Synthesis and characterization of oleic acid coated magnetic nanoparticles for hyperthermia applications. Natural and Applied Sciences Journal, 2(2), 16-29.
Senturk, F., Cakmak, S., Kocum, I. C., Gumusderelioglu, M., & Ozturk, G. G. (2021). GRGDS-conjugated and curcumin-loaded magnetic polymeric nanoparticles for the hyperthermia treatment of glioblastoma cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 622, 1-15.
Senturk, F., Kocum, I. C., & Guler Ozturk, G. (2021). Stepwise implementation of a low-cost and portable radiofrequency hyperthermia system for in vitro/in vivo cancer studies. Instrumentation Science & Technology, 49(6), 629-641.
Sheybani, N. D., Batts, A. J., Mathew, A. S., Thim, E. A., & Price, R. J. (2020). Focused ultrasound hyperthermia augments release of glioma-derived extracellular vesicles with differential immunomodulatory capacity. Theranostic, 10(16), 7436-7447.
Shishodia, S., Chaturvedi, M. M., & Aggarwal, B. B. (2007). Role of curcumin in cancer therapy. Current problems in cancer, 31(4), 243-305.
Silvestro, S., Sindona, C., Bramanti, P., Mazzon, E. (2021). A state of the art of antioxidant properties of curcuminoids in neurodegenerative diseases. International Journal of Molecular Sciences, 22(6), 1-27.
Soni, V. K., Shukla, D., Kumar, A., & Vishvakarma, N. K. (2020). Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1. The International Journal of Biochemistry & Cell Biology, 123, 1-30.
Sun, J., Zhao, Y., Hu, J. (2013). Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PloS one, 8, 1-9.
Tang, J. C., Shi, H. S., Wan, L. Q., Wang, Y. S., & Wei, Y. Q. (2013). Enhanced antitumor effect of curcumin liposomes with local hyperthermia in the LL/2 model. Asian Pacific Journal of Cancer Prevention, 14(4), 2307-2310.
Termini, D., Den Hartogh, D. J., Jaglanian, A., Tsiani, E., (2020). Curcumin against prostate cancer: current evidence. Biomolecules, 10, 1-40.
Tsuchida, K., Tsujita, T., Hayashi, M., Ojima, A., Keleku-Lukwete, N., Katsuoka, F., ... & Yamamoto, M. (2017). Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation. Free Radical Biology and Medicine, 103, 236-247.
Udompornmongkol, P., & Chiang, B. H. (2015). Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. Journal of biomaterials applications, 30(5), 537-546.
Vaiserman, A., Koliada, A., Zayachkivska, A., Lushchak, O. (2020). Curcumin: A therapeutic potential in ageing-related disorders. Pharma Nutrition, 14, 30051-30057.
Venkatas, J., Daniels, A., & Singh, M. (2022). The Potential of Curcumin-Capped Nanoparticle Synthesis in Cancer Therapy: A Green Synthesis Approach. Nanomaterials, 12(18), 3201.
Wang, M., Jiang, S., Zhou, L., Yu, F., Ding, H., Li, P., ... & Wang, K. (2019). Potential mechanisms of action of curcumin for cancer prevention: focus on cellular signalling pathways and miRNAs. International journal of biological sciences, 15(6), 1200-1214.
Wang, M., Jiang, S., Zhou, L., Yu, F., Ding, H., Li, P., ... & Wang, K. (2019). Potential mechanisms of action of curcumin for cancer prevention: focus on cellular signaling pathways and miRNAs. International journal of biological sciences, 15(6), 1200-1214.
Wang, W. H., Chen, J., Zhang, B. R., Lu, S. J., Wang, F., Peng, L., & Sun, Y. Z. (2018). Curcumin inhibits proliferation and enhances apoptosis in A549 cells by downregulating lncRNA UCA1. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 73(7), 402-407.
Wang, W., Chen, T., Xu, H., Ren, B., Cheng, X., Qi, R., ... & Chen, C. (2018). Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules, 23(7), 1-13.
Wezgowiec, J., Tsirigotis-Maniecka, M., Saczko, J., Wieckiewicz, M., & Wilk, K. A. (2021). Microparticles vs. macroparticles as curcumin delivery vehicles: Structural studies and cytotoxic effect in human adenocarcinoma cell line (LoVo). Molecules, 26(19), 1-19.
Wilken, R., Veena, M. S., Wang, M. B., & Srivatsan, E. S. (2011). Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular cancer, 10(1), 1-19
Wu, Q., Ou, H., Shang, Y., Zhang, X., Wu, J., & Fan, F. (2021). Nanoscale formulations: incorporating curcumin into combination strategies for the treatment of lung cancer. Drug Design, Development and Therapy, 2695-2709.
Yodkeeree, S., Ampasavate, C., Sung, B., Aggarwal, B. B., & Limtrakul, P. (2010). Demethoxycurcumin suppresses migration and invasion of MDA-MB-231 human breast cancer cell line. European journal of pharmacology, 627(1-3), 8-15.
Zhang, J., Huang, Y., Xu, J., Zhao, R., Xiong, C., Habu, J., & Luo, X. (2022). Global publication trends and research hotspots of curcumin application in tumor: A 20-year bibliometric approach. Frontiers in Oncology, 12, 1-15.
Zhang, Y., Yang, C., Wang, W., Liu, J., Liu, Q., Huang, F., ... & Liu, J. (2016). Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Scientific reports, 6(1), 1-12.
Zhao, L., Yang, C., Dou, J., Xi, Y., Lou, H., & Zhai, G. (2015). Development of RGD-functionalized PEG-PLA micelles for delivery of curcumin. Journal of biomedical nanotechnology, 11(3), 436-446.
Zhao, M. D., Li, J. Q., Chen, F. Y., Dong, W., Wen, L. J., Fei, W. D., & Zheng, C. H. (2019). Co-delivery of curcumin and paclitaxel by “core-shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. International journal of nanomedicine,14, 9453-9467.
Zheng, B., McClements, D. J. (2020). Formulation of more efficacious curcumin delivery systems using colloid science: enhanced solubility, stability, and bioavailability. Molecules, 25(12), 1-25.
Zhu, X., Yu, Z., Feng, L., Deng, L., Fang, Z., Liu, Z., ... & Zheng, Y. (2021). Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer. Carbohydrate Polymers, 268, 1-18.
Zinatloo, A. S., & Taheri, Q. N. (2014). Inverse miniemulsion method for synthesis of gelatin nanoparticles in presence of CDI/NHS as a non-toxic cross-linking system.
View Dimensions
View Altmetric
Save
Citation
View
Share