Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Efficacy of Herbal Medicine as Adjunctive Therapy for Skin Cancer

Norbayu Mansor1, Julia Joseph1, Rola Al Shalabi1, Nozlena Binti Abdul Samad*1

+ Author Affiliations

Journal of Angiotherapy 6(2) 683-695 https://doi.org/10.25163/angiotherapy.624310

Submitted: 28 April 2022  Revised: 08 October 2022  Published: 15 November 2022 

Phytochemicals can be used for skin cancer prevention and treatment.

Abstract


Skin cancer is a condition in which the skin's cells grow abnormally. Skin cancer is one of the most common types of cancer worldwide. It is more frequently found in locations exposed to sunlight, although it can also occur in areas that are not normally exposed to sunlight. Numerous studies have investigated the efficacy of herbal medicine as adjuvant therapy for skin cancer. Herbal medicine utilises plants, or combinations of plant extracts, to treat illness and promote health. Herbal medicine has grown in popularity over the last few decades due to its critical role in cancer prevention and therapy. As a result, herbal treatments are increasingly being studied and utilised extensively to treat skin cancers worldwide. This article aims to discuss the anticancer capabilities of herbal medicine as an adjuvant therapy for skin cancer and the potential for their bioactive components to increase immunity and kill cancer cells. In addition, this study will present an overview of anti-cancer compounds produced from plants that have been proven to have potential anti-carcinogenic characteristics in various skin cancer cell lines and animal models. This review aims to increase awareness of herbal medicine as an adjuvant therapy for cancer and to provide further data for developing more effective anti-cancer medicines. Research utilising herbal medicine in various forms and at various levels in the future with more carefully designed studies will need to be conducted, including rigorous quality control and standardised models at the cellular, organic, animal, and clinical levels to combat skin cancer.

Keywords: Skin cancer, herbal medicine, adjunctive therapy, melanoma

References


Craythorne, E., & Al-Niami, F. (2017). Skin cancer. Medicine, 45(7), 431-434.

McGrath, J. A., Eady, R. A. J., & Pope, F. M. (2004). Anatomy and organization of human skin. Rook’s textbook of dermatology, 1, 3-2.

Narayanan, D. L., Saladi, R. N., & Fox, J. L. (2010). Ultraviolet radiation and skin cancer. International journal of dermatology, 49(9), 978-986.

Craythorne, E., & Al-Niami, F. (2017). Skin cancer. Medicine, 45(7), 431-434.

Gloster Jr, H. M., & Neal, K. (2006). Skin cancer in skin of color. Journal of the American Academy of Dermatology, 55(5), 741-760.

Marks, R. (2000). Epidemiology of melanoma: Clinical dermatology• Review article. Clinical and Experimental Dermatology: Clinical dermatology, 25(6), 459-463.

Rubin, A. I., Chen, E. H., & Ratner, D. (2005). Basal-cell carcinoma. New         England Journal of   Medicine, 353(21), 2262-2269.

Wong, C. S. M., Strange, R. C., & Lear, J. T. (2003). Basal cell carcinoma. Bmj, 27(7418), 794-798.

Kuijpers, D. I., Thissen, M. R., & Neumann, M. H. (2002). Basal cell carcinoma. American journal of clinical dermatology, 3(4), 247-259.

Lear, J. T., & Smith, A. G. (1997). Basal cell carcinoma. Postgraduate medical journal, 73(863), 538-542.

Telfer, N. R., Colver, G. B., & Morton, C. A. (2008). Guidelines for the management of basal cell carcinoma. British journal of Dermatology, 159(1), 35-48.

Rudolph, R., & Zelac, D. E. (2004). Squamous cell carcinoma of the skin. Plastic and reconstructive surgery, 114(6), 82e-94e.

Yan, W., Wistuba, I. I., Emmert- Buck, M. R., & Erickson, H. S. (2011). Squamous cell carcinoma– similarities and differences among anatomical sites. American journal of cancer research, 1(3), 275.

Kwa, R. E., Campana, K., & Moy, R.L. (1992). Biology of cutaneous squamous cell carcinoma. Journal of the American Academy of Dermatology, 26(1), 1-26.

Thompson, J. F., Scolyer, R. A., & Kefford, R. F. (2005). Cutaneous melanoma. The Lancet, 365(9460), 687-701.

Schadendorf, D., Fisher, D. E., Garbe, C., Gershenwald, J. E., Grob, J. J., Halpern, A., ... & Hauschild, A. (2015). Melanoma. Nature reviews Disease primers, 1(1), 1-20.

World Health Organization. (1998). Guidelines for the appropriate use of herbal medicines.

World   Health   Organization. (2013). WHO traditional medicine strategy: 2014-2023. World Health Organization.

Wang, J., & Xiong, X. (2012). Outcome measures of Chinese herbal medicine for       hypertension: An   overview of systematic  reviews. Evidence-Based Complementary and Alternative Medicine, 2012.

Carmady, B., & Smith, C. A. (2011). Use of Chinese medicine by cancer patients: a review of surveys. Chinese Medicine, 6(1), 1-8.

Nobili, S., Lippi, D., Witort, E., Donnini, M., Bausi, L., Mini, E., &  Capaccioli, S. (2009). Natural compounds for cancer treatment and prevention. Pharmacological research, 59(6), 365-378.

Efferth, T., Li, P. C., Konkimalla, V.S. B., & Kaina, B. (2007). From traditional Chinese medicine to rational cancer therapy. Trends in molecular medicine, 13(8), 353-361.

Ekor, M. (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in pharmacology, 4, 177.

Zhang, X., Qiu, H., Li, C., Cai, P., & Qi, F. (2021). The positive role of traditional Chinese medicine as an adjunctive therapy               for cancer. BioScience Trends.

Zhou, C., Mao, X. P., Guo, Q., & Zeng, F. Q. (2009). Diallyl trisulphide-induced apoptosis in human melanoma cells involves downregulation of Bcl-2 and Bcl-xL expression and activation of caspases. Clinical and Experimental Dermatology:       Experimental dermatology, 34(8), e537-e543.

Lo, C. Y., Liu, P. L., Lin, L. C., Chen, Y. T., Hseu, Y. C., Wen, Z. H., & Wang, H. M. (2013). Antimelanoma and antityrosinase from Alpinia galangal constituents. The Scientific World Journal, 2013.

Zhang, W., Lan, Y., Huang, Q., & Hua, Z. (2013). Galangin induces B16F10 melanoma cell apoptosis via mitochondrial pathway and sustained activation    of p38 MAPK. Cytotechnology, 65(3), 447- 455.

Perrone, D., Ardito, F., Giannatempo, G., Dioguardi, M., Troiano, G., Lo Russo, L., ... & Lo Muzio, L. (2015). Biological and therapeutic activities, and anticancer properties of curcumin. Experimental and  therapeutic medicine, 10(5), 1615- 1623.

Jiang, A. J., Jiang, G., Li, L. T., & Zheng, J. N. (2015). Curcumin induces apoptosis through mitochondrial pathway and caspases activation in human melanoma cells. Molecular biology reports, 42(1), 267-275.

Huang, Z. R., Hung, C. F., Lin, Y. K., & Fang, J. Y. (2008). In vitro and in vivo evaluation of topical delivery and potential dermal use of soy isoflavones genistein and daidzein. International journal of pharmaceutics, 364(1), 36-44.

Lin, J. Y., Tournas, J. A., Burch, J. A., Monteiro-Riviere, N. A., & Zielinski, J. (2008). Topical isoflavones provide effective photoprotection to  skin. Photodermatology, photoimmunology & photomedicine, 24(2), 61-66.

Wang, H. Z., Zhang, Y., Xie, L. P., Yu, X. Y., & Zhang, R. Q. (2002). Effects of genistein and daidzein on the cell growth, cell cycle, and differentiation of human and murine melanoma cells. The Journal of nutritional biochemistry, 13(7), 421- 426.

Miller, J. A., Lang, J. E., Ley, M., Nagle, R., Hsu, C. H., Thompson, P. A., ... & Chow, H. S. (2013). Human breast tissue disposition and bioactivity of limonene in women with              early-stage breast cancer. Cancer Prevention Research, 6(6), 577-584.

Chaudhary, S. C., Siddiqui, M. S., Athar, M., & Alam, M. S. (2012). D- Limonene modulates inflammation, oxidative stress and Ras-ERK pathway to inhibit murine skin tumorigenesis. Human & experimental toxicology, 31(8), 798- 811.

35. Lu, L. Y., Ou, N., & Lu, Q. B. (2013). Antioxidant induces DNA damage, cell death and mutagenicity in human lung and skin normal cells. Scientific reports, 3(1), 1-11.

Batra, P., & Sharma, A. K. (2013). Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech, 3(6), 439- 459.

Katiyar, S., Elmets, C. A., & Katiyar, S. K. (2007). Green tea and skin cancer photoimmunology, angiogenesis and DNA repair. The Journal             of nutritional biochemistry, 18(5), 287-296.

Katiyar, S. K. (2011). Green tea prevents non-melanoma skin cancer by enhancing DNA repair. Archives of biochemistry and  biophysics, 508(2), 152-158.

Nihal, M., Ahsan, H., Siddiqui, I. A., Mukhtar, H., Ahmad, N., & Wood, G.

S. (2009). (-)-Epigallocatechin-3- gallate (EGCG) sensitizes melanoma cells to interferon induced growth inhibition in a mouse model of human melanoma. Cell Cycle, 8(13), 2057- 2063.

Sevin, A., Öztas, P., Senen, D., Han, Ü., Karaman, C., Tarimci, N., ... & Erdogan, B. (2007). Effects of polyphenols on skin damage due to ultraviolet A rays: an experimental study on rats. Journal of the European Academy of Dermatology and Venereology, 21(5), 650-656.

Sukumaran, K., Unnikrishnan, M. C., & Kuttan, R. A. M. A. D. A. S. A. N. (1994). Inhibition of tumour promotion in mice by eugenol. Indian journal of physiology and pharmacology, 38, 306-306.

Al Shawi, A., Rasul, A., Khan, M., Iqbal, F., & Tonghui, M. (2011). Eupatilin: A flavonoid compound isolated from the artemisia plant, induces apoptosis and G2/M phase cell cycle arrest in human melanoma A375 cells. African Journal of Pharmacy and Pharmacology, 5(5), 582-588.

Thilagam, E., Chidambaram, K., Raviteja, C., Vahana, T., Vasudevan, P., & Garrido, G. (2020). Anti- hyperglycemic and hypolipidemic effects of Saraca asoca (Roxb.) Wild. flowers in alloxan-treated diabetic rats. J. Pharm. Pharmacogn. Res, 9, 58-68.

Cibin, T. R., Devi, D. G., & Abraham, A. (2010). Chemoprevention of skin cancer by the flavonoid fraction of Saraca              asoka. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 24(5), 666-672.

Wei, H., Saladi, R., Lu, Y., Wang, Y., Palep, S. R., Moore, J., ... & Lebwohl, M. G. (2003). Isoflavone genistein: photoprotection and clinical implications in dermatology. The Journal of nutrition, 133(11), 3811S- 3819S.

Shyong, E. Q., Lu, Y., Lazinsky, A., Saladi, R. N., Phelps, R. G., Austin, L. M., ... & Wei, H. (2002). Effects of the isoflavone 4′, 5, 7- trihydroxyisoflavone (genistein) on psoralen plus ultraviolet A radiation (PUVA)-induced photodamage. Carcinogenesis, 23(2), 317-321.

Wei, H., Bowen, R., Zhang, X., & Lebwohl, M. (1998). Isoflavone genistein inhibits the initiation and promotion of two-stage skin carcinogenesis in mice. Carcinogenesis, 19(8), 1509- 1514.

Kapadia, G. J., Azuine, M. A., Tokuda, H., Takasaki, M., Mukainaka, T., Konoshima, T., & Nishino, H. (2002). Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the Epstein– Barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis. Pharmacological Research, 45(6), 499-505.

Korac, R. R., & Khambholja, K. M. (2011). Potential of herbs in skin protection from   ultraviolet radiation. Pharmacognosy reviews, 5(10), 164.

Budiyanto, A., Ahmed, N. U., Wu, A., Bito, T., Nikaido, O., Osawa, T., ... & Ichihashi, M. (2000). Protective effect of topically applied olive oil against photocarcinogenesis  following UVB   exposure    of mice. Carcinogenesis, 21(11), 2085-2090.

Zhao, J., Wang, J., Chen, Y., & Agarwal, R. (1999). Anti-tumor- promoting activity of a polyphenolic fraction isolated from grape seeds in the mouse skin two-stage initiation– promotion protocol and identification of procyanidin B5-3′-gallate as the most        effective antioxidant constituent. Carcinogenesis, 20(9), 1737-1745.

Mittal, A., Elmets, C. A., & Katiyar, S. K. (2003). Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: relationship to decreased fat and lipid peroxidation. Carcinogenesis, 24(8), 1379-1388.

Hora, J. J., Maydew, E. R., Lansky, E. P., & Dwivedi, C. (2003). Chemopreventive effects of pomegranate seed oil on skin tumor development in CD1 mice. Journal of medicinal food, 6(3), 157-161.

Ngo, S. N., Williams, D. B., & Head, R. J. (2011). Rosemary and cancer prevention:       preclinical perspectives. Critical reviews in food science and nutrition, 51(10), 946- 954.

Huang, S. C., Ho, C. T., Lin-Shiau, S. Y., & Lin, J. K. (2005). Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappaB and c-Jun. Biochemical pharmacology, 69(2), 221-232.

Ren, S., & Lien, E. J. (1997). Natural products and their derivatives as cancer chemopreventive agents. Progress in Drug Research/Fortschritte der Arzneimittelforschung/Progrès des recherches pharmaceutiques, 147- 171.

Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., ... & Pezzuto, J. M. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275(5297), 218-220.

Adhami, V. M., Afaq, F., & Ahmad, N. (2003). Suppression of ultraviolet B exposure-mediated activation of NF-κB in normal human keratinocytes by resveratrol. Neoplasia, 5(1), 74-82.

Afaq, F., Adhami, V. M., & Ahmad, N. (2003). Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. Toxicology and applied pharmacology, 186(1), 28- 37.

Ahmad, N., Adhami, V. M., Afaq, F., Feyes, D. K., & Mukhtar, H. (2001). Resveratrol causes WAF-1/p21- mediated G1-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clinical       Cancer Research, 7(5), 1466-1473.

Pezzuto, J. M. (2008). Resveratrol as an inhibitor of carcinogenesis. Pharmaceutical Biology, 46(7-8), 443-573.

Yang, Z., Yang, S., Misner, B. J., Chiu, R., Liu, F., & Meyskens, F. L. (2008). Nitric oxide initiates progression of human melanoma via a feedback loop mediated by apurinic/apyrimidinic endonuclease- 1/redox factor-1, which is inhibited by resveratrol. Molecular cancer therapeutics, 7(12), 3751-3760.

Tokuda, H., Ohigashi, H., Koshimizu, K., & Ito, Y. (1986). Inhibitory effects of ursolic and oleanolic ancid on skin tumor promotion by 12-O- tetradecanoylphorbol-13- acetate. Cancer letters, 33(3), 279- 285.

Huang, M. T., Ho, C. T., Wang, Z. Y., Ferraro, T., Lou, Y. R., Stauber, K., ... & Conney, A. H. (1994). Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer research, 54(3), 701- 708.

Ramachandran, S. (2008). Modulation of UVB-induced Oxidative Stress by Ursolic Acid in Human Blood Lymphocytes S. Ramachandran, N. Rajendra Prasad, KV Pugalendi and Venugopal P. Menon Department of Biochemistry and Biotechnology, Annamalai University. Asian Journal of Biochemistry, 3(1), 11-18.

Zhang, H., Samadi, A. K., Cohen, M. S., & Timmermann, B. N. (2012). Antiproliferative withanolides from the Solanaceae: A structure–activity study. Pure and Applied Chemistry, 84(6), 1353-1367.

Kalthur, G., Mutalik, S., & Pathirissery, U. D. (2009). Effect of withaferin A on the development and decay of thermotolerance in B16F1 melanoma: A preliminary study. Integrative cancer therapies, 8(1), 93-97.

Kalthur, G., & Pathirissery, U. D. (2010). Enhancement of the response of B16F1 melanoma to fractionated radiotherapy and prolongation of survival by withaferin A and/or hyperthermia. Integrative cancer therapies, 9(4), 370-377.

Mayola, E., Gallerne, C., Degli Esposti, D., Martel, C., Pervaiz, S., Larue, L., ... & Lemaire, C. (2011). Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl- 2. Apoptosis, 16(10), 1014-1027.

Leyon, P. V., & Kuttan, G. (2004). Effect of Withania somnifera on B16F-10 melanoma induced metastasis in mice. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(2), 118-122.

Abdullaev, F. I. (2002). Cancer chemopreventive and tumoricidal properties of saffron Crocus sativus L.). Experimental biology and medicine, 227(1), 20-25.

Das, I., Chakrabarty, R. N., & Das, S. (2004). Saffron can prevent chemically induced skin carcinogenesis in Swiss albino mice. Asian Pac J Cancer Prev, 5(1), 70-76.

Das, I., Das, S., & Saha, T. (2010). Saffron suppresses oxidative stress in DMBA-induced skin carcinoma: A histopathological study. Acta histochemica, 112(4), 317-327.

 

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
667
View
0
Share