References
Abedinia, O., Lotfi, M., Bagheri, M., Sobhani, B., Shafie-Khah, M., & Catalão, J. P. (2020). Improved EMD-based complex prediction model for wind power forecasting. IEEE Transactions on Sustainable Energy, 11(4), 2790–2802. https://doi.org/10.1109/TSTE.2020.2973741
Adlen, K., & Ridha, K. (2022). Recurrent neural network optimization for wind turbine condition prognosis. Diagnostyka, 23(2), 2022301. https://doi.org/10.29354/diag/149825
Ahmadi, A., Talaei, M., Sadipour, M., Amani, A. M., & Jalili, M. (2022). Deep federated learning-based privacy-preserving wind power forecasting. IEEE Access, 11, 39521–39530. https://doi.org/10.1109/ACCESS.2022.3167065
Akbar, K., Zou, Y., Awais, Q., Baig, M. J. A., & Jamil, M. (2022). A machine learning-based robust state of health (SOH) prediction model for electric vehicle batteries. Electronics, 11(8), 1216. https://doi.org/10.3390/electronics11081216
Al-Yahyai, S., Charabi, Y., & Gastli, A. (2010). Review of the use of numerical weather prediction (NWP) models for wind energy assessment. Renewable and Sustainable Energy Reviews, 14(9), 3192–3198. https://doi.org/10.1016/j.rser.2010.07.001
Bhavsar, S., Pitchumani, R., & Ortega-Vazquez, M. (2021). Machine learning enabled reduced-order scenario generation for stochastic analysis of solar power forecasts. Applied Energy, 293, 116964. https://doi.org/10.1016/j.apenergy.2021.116964
Chatterjee, J., & Dethlefs, N. (2021). Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present, and future. Renewable and Sustainable Energy Reviews, 144, 111051. https://doi.org/10.1016/j.rser.2021.111051
Chen, R., Cao, J., & Zhang, D. (2021). Probabilistic prediction of photovoltaic power using a Bayesian neural network—LSTM model. In Proceedings of the 2021 IEEE 4th International Conference on Renewable Energy and Power Engineering (REPE) (pp. 294–299). Beijing, China. https://doi.org/10.1109/REPE53134.2021.9631933
Clifton, A., Daniels, M., & Lehning, M. (2014). Effect of winds in a mountain pass on turbine performance. Wind Energy, 17(11), 1543–1562. https://doi.org/10.1002/we.1646
Clifton, A., Kilcher, L., Lundquist, J., & Fleming, P. (2013). Using machine learning to predict wind turbine power output. Environmental Research Letters, 8(2), 024009. https://doi.org/10.1088/1748-9326/8/2/024009
Dong, H., Xie, J., & Zhao, X. (2022). Wind farm control technologies: From classical control to reinforcement learning. Progress in Energy, 4(3), 032006. https://doi.org/10.1088/2516-1083/ac7e25
Du, M., Ma, S., & He, Q. (2016). A SCADA data-based anomaly detection method for wind turbines. In Proceedings of the 2016 China International Conference on Electricity Distribution (CICED) (pp. 1–6). Xi’an, China. https://doi.org/10.1109/CICED.2016.7576175
Feng, Z., Liang, M., Zhang, Y., & Hou, S. (2012). Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation. Renewable Energy, 47, 112–126. https://doi.org/10.1016/j.renene.2012.04.001
Foley, A. M., Leahy, P. G., Marvuglia, A., & McKeogh, E. J. (2012). Current methods and advances in forecasting of wind power generation. Renewable Energy, 37(1), 1–8. https://doi.org/10.1016/j.renene.2011.05.033
Hu, Y., Kuang, W., Qin, Z., Li, K., Zhang, J., Gao, Y., Li, W., & Li, K. (2021). Artificial intelligence security: Threats and countermeasures. ACM Computing Surveys, 55(1), 1–36. https://doi.org/10.1145/3464426
Karanki, S. B., Xu, D., Venkatesh, B., & Singh, B. N. (2013). Optimal location of battery energy storage systems in a power distribution network for integrating renewable energy sources. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition (pp. 4553–4558). Denver, CO, USA. https://doi.org/10.1109/ECCE.2013.6647279
Karimi, A., Aminifar, F., Fereidunian, A., & Lesani, H. (2019). Energy storage allocation in wind integrated distribution networks: An MILP-based approach. Renewable Energy, 134, 1042–1055. https://doi.org/10.1016/j.renene.2018.12.079
Khan, N., Shahid, Z., Alam, M. M., Bakar Sajak, A. A., Mazliham, M., Khan, T. A., & Ali Rizvi, S. S. (2022). Energy management systems using smart grids: An exhaustive parametric comprehensive analysis of existing trends, significance, opportunities, and challenges. International Transactions on Electrical Energy Systems, 2022, 3358795. https://doi.org/10.1155/2022/3358795
Kolokotsa, D., Kampelis, N., Mavrigiannaki, A., Gentilozzi, M., Paredes, F., Montagnino, F., & Venezia, L. (2019). On the integration of the energy storage in smart grids: Technologies and applications. Energy Storage, 1(1), e50. https://doi.org/10.1002/est2.50
Kulkarni, P. A., Dhoble, A. S., & Padole, P. M. (2019). Deep neural network-based wind speed forecasting and fatigue analysis of a large composite wind turbine blade. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(10), 2794–2812. https://doi.org/10.1177/0954406218798625
Liu, Y., Guan, L., Hou, C., Han, H., Liu, Z., Sun, Y., & Zheng, M. (2019). Wind power short-term prediction based on LSTM and discrete wavelet transform. Applied Sciences, 9(6), 1108. https://doi.org/10.3390/app9061108
Lu, Y., Sun, L., Zhang, X., Feng, F., Kang, J., & Fu, G. (2018). Condition-based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach. Applied Ocean Research, 74, 69–79. https://doi.org/10.1016/j.apor.2018.02.005
Ma, Y., Chen, X., Wang, L., & Yang, J. (2021). Study on smart home energy management system based on artificial intelligence. Journal of Sensors, 2021, 9101453. https://doi.org/10.1155/2021/9101453
Margaris, I., Hansen, A. D., Sørensen, P., & Hatziargyriou, N. (2011). Dynamic security issues in autonomous power systems with increasing wind power penetration. Electric Power Systems Research, 81(5), 880–887. https://doi.org/10.1016/j.epsr.2010.11.014
Murat, K., Umit, C., Vinayak, S., & Ozgur, G. (2020). Gaining insight into solar photovoltaic power generation forecasting utilizing explainable artificial intelligence tools. IEEE Access, 8, 187814–187823. https://doi.org/10.1109/ACCESS.2020.3030674
Nadeem, F., Hussain, S. M. S., Tiwari, P. K., Goswami, A. K., & Ustun, T. S. (2018). Comparative review of energy storage systems, their roles and impacts on future power systems. IEEE Access, 7, 4555–4585. https://doi.org/10.1109/ACCESS.2018.2888497
Pan, G., Zhang, H., Ju, W., Yang, W., Qin, C., Pei, L., Sun, Y., & Wang, R. (2020, November 6–8). A prediction method for ultra short-term wind power prediction basing on long short-term memory network and extreme learning machine. In Proceedings of the 2020 Chinese Automation Congress (CAC) (pp. 7608–7612). Shanghai, China. https://doi.org/10.1109/CAC51589.2020.9327946
Qin, C., & Yu, Y. (2014). Security region based probabilistic small signal stability analysis for power systems with wind power integration. Automation of Electric Power Systems, 38, 43–48