References
Ahmad, Z., Rahim, S., Zubair, M., & Abdul-Ghafar, J. (2021). Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. A comprehensive review. Diagnostic Pathology, 16(1), 24. https://doi.org/10.1186/s13000-021-01085-4
Awotunde, J. B., Adeniyi, E. A., Ogundokun, R. O., & Ayo, F. E. (2021). Application of Big Data with Fintech in Financial Services. In Blockchain technologies (pp. 107–132). https://doi.org/10.1007/978-981-33-6137-9_3
Bahrammirzaee, A., Ghatari, A. R., Ahmadi, P., & Madani, K. (2009). Hybrid credit ranking intelligent system using expert system and artificial neural networks. Applied Intelligence, 34(1), 28–46. https://doi.org/10.1007/s10489-009-0177-8
Bao, Y., Hilary, G., & Ke, B. (2022). Artificial Intelligence and Fraud Detection. In Springer series in supply chain management (pp. 223–247). https://doi.org/10.1007/978-3-030-75729-8_8
Bathla, G., Bhadane, K., Singh, R. K., Kumar, R., Aluvalu, R., Krishnamurthi, R., Kumar, A., Thakur, R. N., & Basheer, S. (2022). Autonomous vehicles and intelligent automation: applications, challenges, and opportunities. Mobile Information Systems, 2022, 1–36. https://doi.org/10.1155/2022/7632892
Burgess, A. (2017). The Executive Guide to Artificial Intelligence. https://doi.org/10.1007/978-3-319-63820-1
Campbell, C., Sands, S., Ferraro, C., Tsao, H., & Mavrommatis, A. (2019). From data to action: How marketers can leverage AI. Business Horizons, 63(2), 227–243. https://doi.org/10.1016/j.bushor.2019.12.002
Cao, Y., & Zhai, J. (2022). A survey of AI in finance. Journal of Chinese Economic and Business Studies, 20(2), 125–137. https://doi.org/10.1080/14765284.2022.2077632
Chen, N., Ribeiro, B., & Chen, A. (2015). Financial credit risk assessment: a recent review. Artificial Intelligence Review, 45(1), 1–23. https://doi.org/10.1007/s10462-015-9434-x
Cheng, L., & Yu, T. (2019). A new generation of AI: A review and perspective on machine learning technologies applied to smart energy and electric power systems. International Journal of Energy Research, 43(6), 1928–1973. https://doi.org/10.1002/er.4333
Fountain, J. E. (2021). The moon, the ghetto and artificial intelligence: Reducing systemic racism in computational algorithms. Government Information Quarterly, 39(2), 101645. https://doi.org/10.1016/j.giq.2021.101645
Goh, R. Y., & Lee, L. S. (2019). Credit Scoring: A review on support vector machines and metaheuristic Approaches. Advances in Operations Research, 2019, 1–30. https://doi.org/10.1155/2019/1974794
Hájek, P., & Olej, V. (2010). Credit rating modelling by kernel-based approaches with supervised and semi-supervised learning. Neural Computing and Applications, 20(6), 761–773. https://doi.org/10.1007/s00521-010-0495-0
Han, J., Huang, Y., Liu, S., & Towey, K. (2020). Artificial intelligence for anti-money laundering: a review and extension. Digital Finance, 2(3–4), 211–239. https://doi.org/10.1007/s42521-020-00023-1
Herrmann, H., & Masawi, B. (2022). Three and a half decades of artificial intelligence in banking, financial services, and insurance: A systematic evolutionary review. Strategic Change, 31(6), 549–569. https://doi.org/10.1002/jsc.2525
Injadat, M., Moubayed, A., Nassif, A. B., & Shami, A. (2021). Machine learning towards intelligent systems: applications, challenges, and opportunities. Artificial Intelligence Review, 54(5), 3299–3348. https://doi.org/10.1007/s10462-020-09948-w
Ishii, K. (2017). Comparative legal study on privacy and personal data protection for robots equipped with artificial intelligence: looking at functional and technological aspects. AI & Society, 34(3), 509–533. https://doi.org/10.1007/s00146-017-0758-8
Kaplan, A., & Haenlein, M. (2018). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004
Khalid, S., Khan, M. A., Mazliham, Alam, M. M., Aman, N., Taj, M. T., Zaka, R., & Jehangir, M. (2022). Predicting Risk through Artificial Intelligence Based on Machine Learning Algorithms: A Case of Pakistani Nonfinancial Firms. Complexity, 2022(1). https://doi.org/10.1155/2022/6858916
Kumar, A., Srivastava, A., & Gupta, P. K. (2022). Banking 4.0: The era of artificial intelligence-based fintech. Strategic Change, 31(6), 591–601. https://doi.org/10.1002/jsc.2526
Kumari, B., Kaur, J., & Swami, S. (2021). System Dynamics Approach for adoption of Artificial Intelligence in Finance. In Lecture notes in mechanical engineering (pp. 555–575). https://doi.org/10.1007/978-981-15-8025-3_54
Liu, F., & Panagiotakos, D. (2022). Real-world data: a brief review of the methods, applications, challenges and opportunities. BMC Medical Research Methodology, 22(1), 287. https://doi.org/10.1186/s12874-022-01768-6
Locatelli, R., Pepe, G., & Salis, F. (2022). Artificial intelligence and credit risk. https://doi.org/10.1007/978-3-031-10236-3
Lu, Y. (2019). Artificial intelligence: a survey on evolution, models, applications and future trends. Journal of Management Analytics, 6(1), 1–29. https://doi.org/10.1080/23270012.2019.1570365
Lui, A., & Lamb, G. W. (2018). Artificial intelligence and augmented intelligence collaboration: regaining trust and confidence in the financial sector. Information & Communications Technology Law, 27(3), 267–283. https://doi.org/10.1080/13600834.2018.1488659
Lv, Z., Wang, N., Ma, X., Sun, Y., Meng, Y., & Tian, Y. (2022). Evaluation Standards of Intelligent Technology based on Financial Alternative Data. Journal of Innovation & Knowledge, 7(4), 100229. https://doi.org/10.1016/j.jik.2022.100229
Mazurek, G., & Malagocka, K. (2019). Perception of privacy and data protection in the context of the development of artificial intelligence. Journal of Management Analytics, 6(4), 344–364. https://doi.org/10.1080/23270012.2019.1671243
Qureshi, S. (2020). Why data matters for development? Exploring data justice, Micro-Entrepreneurship, mobile money and financial inclusion. Information Technology for Development, 26(2), 201–213. https://doi.org/10.1080/02681102.2020.1736820
Ravi, V., & Kamaruddin, S. (2017). Big data analytics enabled smart financial services: Opportunities and challenges. In Lecture notes in computer science (pp. 15–39). https://doi.org/10.1007/978-3-319-72413-3_2
Robisco, A. A., & Martínez, J. M. C. (2022). Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction. Financial Innovation, 8(1). https://doi.org/10.1186/s40854-022-00366-1
Sadok, H., Sakka, F., & Maknouzi, M. E. H. E. (2022). Artificial intelligence and bank credit analysis: A review. Cogent Economics & Finance, 10(1). https://doi.org/10.1080/23322039.2021.2023262
Sestino, A., & De Mauro, A. (2021). Leveraging Artificial intelligence in Business: Implications, applications and methods. Technology Analysis and Strategic Management, 34(1), 16–29. https://doi.org/10.1080/09537325.2021.1883583
Tezerjan, M. Y., Samghabadi, A. S., & Memariani, A. (2021). ARF: A hybrid model for credit scoring in complex systems. Expert Systems With Applications, 185, 115634. https://doi.org/10.1016/j.eswa.2021.115634
Valle-Cruz, D., Criado, J. I., Sandoval-Almazán, R., & Ruvalcaba-Gomez, E. A. (2020). Assessing the public policy-cycle framework in the age of artificial intelligence: From agenda-setting to policy evaluation. Government Information Quarterly, 37(4), 101509. https://doi.org/10.1016/j.giq.2020.101509