Energy, Environment and Sustainable Sciences
REVIEWS   (Open Access)

Advancement in Microalgae Biomass Harvesting by Flocculation Technologies and Lipid Extraction for Biofuel Production: Research and Patent Progress

Md Sahidur Rahman1, Mohammad Abu Islam2, Md Moniruzzaman3

+ Author Affiliations

Energy Environment & Economy 2(1) 1-23 https://doi.org/10.25163/energy.2110136

Submitted: 09 May 2024  Revised: 10 August 2024  Published: 14 August 2024 

Abstract

Microalgae research has gained enormous research interest since last few decades because of the diverse number of worthwhile applications and is emerging as a biomass source to produce a variety of biofuels and other value-added products. However, present downstream processing techniques are not fully developed to defeat the techno-economic barriers, among which microalgae harvesting is the major bottleneck for commercialization. Flocculation is considered a superior method to harvest microalgae from growth medium because of harvesting efficiency, operational economics, and technical feasibility. Albeit pretreatment method is important to disrupt the cell wall of microalgae to enhance the lipid extraction. Therefore, this review presents the advanced progress of various flocculation-harvesting methods with special importance of innovative bio flocculation, underlying mechanism of microalgae and flocculation, their effect on lipids and FAME extraction, industrial patent progress and cell disruption methods with the influence of green chemistry solvents for sustainable biodiesel production.

Keywords: Biofuel, microalgae harvesting, flocculation, pretreatment, solvent, lipids.

References

Abo Markeb, A., Llimós-Turet, J., Ferrer, I., Blánquez, P., Alonso, A., Sánchez, A., . . . Font, X. (2019). The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Research, 159, 490-500. doi:https://doi.org/10.1016/j.watres.2019.05.023

Abomohra, A. E.-F., Jin, W., Sagar, V., & Ismail, G. A. (2018). Optimization of chemical flocculation of Scenedesmus obliquus grown on municipal wastewater for improved biodiesel recovery. Renewable Energy, 115, 880-886. doi:10.1016/j.renene.2017.09.019

Abomohra, E. F., Jin, W., Sagar, V., & Ismail, G. (2017). Optimization of chemical flocculation of Scenedesmus obliquus grown on municipal wastewater for improved biodiesel recovery. Renewable Energy, 115.

Adam, F., Abert-Vian, M., Peltier, G., & Chemat, F. (2012). “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technology, 114, 457-465. doi:https://doi.org/10.1016/j.biortech.2012.02.096

Aguirre, A. M., Bassi, A., & Saxena, P. (2013). Engineering challenges in biodiesel production from microalgae. Critical Reviews in Biotechnology, 33(3), 293.

Al-Ameri, M., & Al-Zuhair, S. (2019). Using switchable solvents for enhanced, simultaneous microalgae oil extraction-reaction for biodiesel production. Biochemical Engineering Journal, 141, 217-224. doi:https://doi.org/10.1016/j.bej.2018.10.017

Alam, M. A., Vandamme, D., Chun, W., Zhao, X., Foubert, I., Wang, Z., . . . Vandamme, D. (2016). Bioflocculation as an innovative harvesting strategy for microalgae. Reviews in Environmental Science & Bio/technology, 15(4), 1-11.

Alam, M. A., Wan, C., Guo, S. L., Zhao, X. Q., Huang, Z. Y., Yang, Y. L., . . . Bai, F. W. (2014). Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7. Journal of Bioscience & Bioengineering, 118(1), 29.

Alam, M. A., Wan, C., Zhao, X.-Q., Chen, L.-J., Chang, J.-S., & Bai, F.-W. (2015). Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7. Journal of Hazardous Materials, 289, 38-45. doi:https://doi.org/10.1016/j.jhazmat.2015.02.012

Alkarawi, M. A. S., Caldwell, G. S., & Lee, J. G. M. (2018). Continuous harvesting of microalgae biomass using foam flotation. Algal Research, 36, 125-138. doi:https://doi.org/10.1016/j.algal.2018.10.018

Ansari, F. A., Gupta, S. K., Nasr, M., Rawat, I., & Bux, F. (2018). Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: A multivariate approach. Journal of Cleaner Production, 182, 634-643. doi:https://doi.org/10.1016/j.jclepro.2018.02.098

Anthony, R. J., Ellis, J. T., Sathish, A., Rahman, A., Miller, C. D., & Sims, R. C. (2013). Effect of coagulant/flocculants on bioproducts from microalgae. Bioresource Technology, 149(4), 65-70.

Balasubramanian, R. K., Doan, T. T. Y., & Obbard, J. P. (2013). Factors affecting cellular lipid extraction from marine microalgae. Chemical Engineering Journal, 215-216(2), 929-936.

Balasubramanian, S., Allen, J. D., Kanitkar, A., & Boldor, D. (2011). Oil extraction from Scenedesmus obliquus using a continuous microwave system - design, optimization, and quality characterization. Bioresour Technol, 102(3), 3396-3403.

Barros, A. I., Gonçalves, A. L., Simões, M., & Pires, J. C. M. (2015). Harvesting techniques applied to microalgae: a review. Renewable & Sustainable Energy Reviews, 41(C), 1489-1500.

Behera, B., & Balasubramanian, P. (2019). Natural plant extracts as an economical and ecofriendly alternative for harvesting microalgae. Bioresource Technology, 283, 45-52. doi:https://doi.org/10.1016/j.biortech.2019.03.070

Bhattacharya, A., Mathur, M., Kumar, P., Prajapati, S. K., & Malik, A. (2017). A rapid method for fungal assisted algal flocculation: Critical parameters & mechanism insights. Algal Research, 21, 42-51.

Bligh, E. G., & Dyer, W. J. (1959). A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATION. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. doi:10.1139/o59-099

Blockx, J., Verfaillie, A., Thielemans, W., & Muylaert, K. Unravelling the Mechanism of Chitosan-Driven Flocculationof Microalgae in Seawater as a Function of pH. ACS Sustainable Chemistry & Engineering, 6(9), 11273-11279.

Boli, E., Savvidou, M., Logothetis, D., Louli, V., Pappa, G., Voutsas, E., . . . Magoulas, K. (2017). Magnetic harvesting of marine algae Nannochloropsis oceanica. Separation Science and Technology. doi:10.1080/01496395.2017.1296463

Borges, L., Morónvillarreyes, J. A., D'Oca, M. G. M., & Abreu, P. C. (2011). Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii. Biomass & Bioenergy, 35(10), 4449-4454.

Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustainable Energy Reviews, 14(2), 557-577.

Chang, J. S. (2015). Dewatering and Drying Methods for Microalgae. Drying Technology, 33(4), 443-454.

Chen, C. L., Chang, J. S., & Lee, D. J. (2015). Dewatering and Drying Methods for Microalgae. Drying Technology, 33(4), 443-454.

Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol, 102(1), 71-81. doi:10.1016/j.biortech.2010.06.159

Chen, J., Leng, L., Ye, C., Lu, Q., Addy, M., Wang, J., . . . Zhou, W. (2018). A comparative study between fungal pellet- and spore-assisted microalgae harvesting methods for algae bioflocculation. Bioresource Technology, 259, 181.

Cheng, J., Huang, R., Yu, T., Li, T., Zhou, J. H., & Cen, K. F. (2014). Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction. Bioresource Technology, 151(1), 415-418.

Cheng, J., Qiu, Y., Huang, R., Yang, W., Zhou, J., & Cen, K. (2016). Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst. Bioresource Technology, 221, 344-349.

Chiara, S., Cristian, T., Giulia, S., Daniele, F., Paola, G., Franca, G., . . . Emilio, T. (2010). Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresour Technol, 101(9), 3274-3279.

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306.

Choi, Y. H., Spronsen, J. v., Dai, Y., Verberne, M., Hollmann, F., Arends, I. W. C. E., . . . Verpoorte, R. (2011). Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiology, 156(4), 1701-1705.

Christenson, L., & Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, 29(6), 686-702.

Cooney, M. J., & Benjamin, K. (2016). Chapter 9 – Ionic Liquids in Lipid Extraction and Recovery. Ionic Liquids in Lipid Processing & Analysis, 279-316.

Crampon, C., Mouahid, A., Toudji, S. A. A., Lépine, O., & Badens, E. (2013). Influence of pretreatment on supercritical CO 2 extraction from Nannochloropsis oculata. Journal of Supercritical Fluids, 79(79), 337-344.

Deconinck, N., Muylaert, K., Ivens, W., & Vandamme, D. (2018). Innovative harvesting processes for microalgae biomass production: a perspective from patent literature.

Dejoye Tanzi, C., Abert Vian, M., Ginies, C., Elmaataoui, M., & Chemat, F. (2012). Terpenes as Green Solvents for Extraction of Oil from Microalgae. Molecules, 17(7), 8196.

Demi?Rbas, A., & Demi?Rbas, M. F. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion & Management, 52(1), 163-170.

Dong, T., Knoshaug, E. P., Pienkos, P. T., & Laurens, L. M. L. (2016). Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review. Applied Energy, 177, 879-895. doi:https://doi.org/10.1016/j.apenergy.2016.06.002

Du, Y., Schuur, B., & Dwf, B. (2017). Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent. Industrial & Engineering Chemistry Research, 56(28), 8073-8080.

Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Yadavalli, R., Kolapalli, B., . . . Kuppam, C. (2018). Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews, 94, 49-68. doi:https://doi.org/10.1016/j.rser.2018.05.012

Espino, M., Fernández, M. D. L. Á., Gomez, F. J. V., & Silva, M. F. (2016). Natural designer solvents for greening analytical chemistry. Trac Trends in Analytical Chemistry, 76, 126-136.

Fayad, N. A., Yehya, T., Audonnet, F., & Vial, C. (2017). Harvesting of microalgae Chlorella vulgaris using electro-coagulation-flocculation in the batch mode. Algal Research, 25, 1-11.

Folch, J., Lees, M., & Stanley, G. H. S. (1957). A SIMPLE METHOD FOR THE ISOLATION AND PURIFICATION OF TOTAL LIPIDES FROM ANIMAL TISSUES.

Fu, X., Liu, Y., Zhu, L., & Mou, H. (2019). Flocculation activity of carp protamine in microalgal cells. Aquaculture, 505, 150-156. doi:https://doi.org/10.1016/j.aquaculture.2019.02.052

Fuad, N., Omar, R., Kamarudin, S., Harun, R., Idris, A., & Wan Azlina, W. A. K. G. (2018). Effective use of tannin based natural biopolymer, AFlok-BP1 to harvest marine microalgae Nannochloropsis sp. Journal of Environmental Chemical Engineering, 6(4), 4318-4328. doi:https://doi.org/10.1016/j.jece.2018.06.041

Gani, P., Mohamed sunar, N., Peralta, H. M., Abdul Latiff, A. A., & mohd. fuzi, s. f. z. (2017). Growth of Microalgae Botryococcus sp. in Domestic Wastewater and Application of Statistical Analysis for the Optimisation of Flocculation Using Alum and Chitosan. Preparative Biochemistry & Biotechnology, 47, 333-341. doi:10.1080/10826068.2016.1244686

Gao, S. S., Yang, J. X., Tian, J. Y., Ma, F., Tu, G., & Du, M. A. (2010). Electro-coagulation-flotation process for algae removal. Journal of Hazardous Materials, 177(1–3), 336-343.

Garoma, T., & Janda, D. (2016). Investigation of the effects of microalgal cell concentration and electroporation, microwave and ultrasonication on lipid extraction efficiency. Renewable Energy, 86, 117-123. doi:https://doi.org/10.1016/j.renene.2015.08.009

Gerardo, M. L., Hende, S. V. D., Han, V., Coward, T., & Skill, S. C. (2015). Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants. Algal Research, 11, 248-262.

Gerchman, Y., Vasker, B., Tavasi, M., Mishael, Y., Kinel-Tahan, Y., & Yehoshua, Y. (2017). Effective harvesting of microalgae: Comparison of different polymeric flocculants. Bioresour Technol, 228, 141-146. doi:10.1016/j.biortech.2016.12.040

Ghasemi, N. F., Lm, G. L. G. L., Chan, W., & Schenk, P. M. (2016). Progress on lipid extraction from wet algal biomass for biodiesel production. Microbial Biotechnology, 9(6), 718-726.

Gomez, F. J. V., Espino, M., Fernández, M. A., & Silva, M. F. (2018). A Greener Approach to Prepare Natural Deep Eutectic Solvents. ChemistrySelect, 3(22), 6122-6125. doi:10.1002/slct.201800713

Guldhe, A., Misra, R., Singh, P., Rawat, I., & Bux, F. (2016). An innovative electrochemical process to alleviate the challenges for harvesting of small size microalgae by using non-sacrificial carbon electrodes. Algal Research, 19, 292-298.

Günerken, E., D'Hondt, E., Eppink, M. H. M., Garcia-Gonzalez, L., Elst, K., & Wijffels, R. H. (2015). Cell disruption for microalgae biorefineries. Biotechnology Advances, 33(2), 243-260. doi:https://doi.org/10.1016/j.biotechadv.2015.01.008

Guo, S. L., Zhao, X. Q., Wan, C., Huang, Z. Y., Yang, Y. L., Alam, M. A., . . . Chang, J. S. (2013). Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Bioresource Technology, 145(19), 285.

Gupta, P. L., Lee, S. M., & Choi, H. J. (2016). Integration of microalgal cultivation system for wastewater remediation and sustainable biomass production. World Journal of Microbiology & Biotechnology, 32(8), 139.

Gupta, S. K., Kumar, M., Guldhe, A., Ansari, F. A., Rawat, I., Kanney, K., & Bux, F. (2014). Design and development of polyamine polymer for harvesting microalgae for biofuels production. Energy Conversion & Management, 85(9), 537-544.

Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances, 30(3), 709-732.

Hansel, P. A., Riefler, R. G., & Stuart, B. J. (2014). Efficient flocculation of microalgae for biomass production using cationic starch. Algal Research, 5(4), 133-139.

Hattab, M. A., Ghaly, A., & Hammouda, A. (2015). Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. Journal of Fundamentals of Renewable Energy & Applications, 05(2).

Ho, S.-H., Chiu, S.-Y., Kao, C.-Y., Chen, T.-Y., Chang, Y.-B., Chang, J.-S., & Lin, C.-S. (2017). Ferrofluid-assisted rapid and directional harvesting of marine microalgal Chlorella sp. used for biodiesel production. Bioresource Technology, 244, 1337-1340. doi:https://doi.org/10.1016/j.biortech.2017.05.110

Howlader, M. S., Rai, N., & Todd French, W. (2018). Improving the lipid recovery from wet oleaginous microorganisms using different pretreatment techniques. Bioresource Technology, 267, 743-755. doi:https://doi.org/10.1016/j.biortech.2018.07.092

Huang, W. C., Hui, L., Sun, W., Xue, C., & Mao, X. (2018). Effective astaxanthin extraction from wet Haematococcus pluvialis using switchable hydrophilicity solvents. ACS Sustainable Chemistry & Engineering, 6(2), acssuschemeng.7b04624.

Ibrahim, M. A., Osama, D. M., & Farouk, E.-B. K. (2016). Using the natural polymer chitosan in harvestingcenedesmus species under different concentrations and Cultural ph values. International Journal of Pharma & Bio Sciences, 7(4).

Jaeyon, L., Chan, Y., Soyoung, J., Chiyong, A., Heemock, O., Lee, J. S., & Saka, S. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101(1), S75-S77.

Jeevan Kumar, S. P., Vijay Kumar, G., Dash, A., Scholz, P., & Banerjee, R. (2017). Sustainable green solvents and techniques for lipid extraction from microalgae: A review. Algal Research, 21, 138-147. doi:https://doi.org/10.1016/j.algal.2016.11.014

Jesse, H., Kelsey, V., Pascale, C., & G., J. P. Advances in microalgal lipid extraction for biofuel production: a review. Biofuels, Bioproducts and Biorefining.

Joshi, S., & Gogate, P. (2018). Process Intensification of Biofuel Production from Microalgae. In E. Jacob-Lopes, L. Queiroz Zepka, & M. I. Queiroz (Eds.), Energy from Microalgae (pp. 59-87). Cham: Springer International Publishing.

Kadir, W. N. A., Lam, M. K., Uemura, Y., Lim, J. W., & Lee, K. T. (2018). Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review. Energy Conversion and Management, 171, 1416-1429. doi:https://doi.org/10.1016/j.enconman.2018.06.074

Kandasamy, G., & Shaleh, S. R. M. (2017). Harvesting of the Microalga Nannochloropsis sp. by Bioflocculation with Mung Bean Protein Extract. Applied Biochemistry & Biotechnology, 182(2), 1-12.

Kapoore, R. V., Butler, T. O., Pandhal, J., & Vaidyanathan, S. (2018). Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery. Biology, 7(1), 18-.

Kim, D. Y., Lee, K., Lee, J., Lee, Y. H., Han, J. I., Park, J. Y., & Oh, Y. K. (2017). Acidified-flocculation process for harvesting of microalgae: Coagulant reutilization and metal-free-microalgae recovery. Bioresource Technology, 239, 190.

Kim, D. Y., Oh, Y. K., Park, J. Y., Kim, B., Choi, S. A., & Han, J. I. (2015). An integrated process for microalgae harvesting and cell disruption by the use of ferric ions. Bioresour Technol, 191, 469-474. doi:10.1016/j.biortech.2015.03.020

Kim, J., Yoo, G., Lee, H., Lim, J., Kim, K., Kim, C. W., . . . Yang, J. W. (2013). Methods of downstream processing for the production of biodiesel from microalgae. Biotechnology Advances, 31(6), 862-876.

Kirnev, P. C. S., Carvalho, J. C. D., Miyaoka, J. T., Cartas, L. C., Vandenberghe, L. P. S., & Soccol, C. R. (2018). Harvesting Neochloris oleoabundans using commercial organic flocculants. Journal of Applied Phycology, 1-8.

Koley, S., Prasad, S., Bagchi, S. K., & Mallick, N. (2017). Development of a harvesting technique for large-scale microalgal harvesting for biodiesel production. Rsc Advances, 7(12), 7227-7237.

Kumar Gupta, S., Kumar, N. M., Guldhe, A., Ahmad Ansari, F., Rawat, I., Nasr, M., & Bux, F. (2018). Wastewater to biofuels: Comprehensive evaluation ofvarious flocculants on biochemical composition and yield of microalgae. Ecological Engineering, 117, 62-68. doi:https://doi.org/10.1016/j.ecoleng.2018.04.005

Kumar, N., Banerjee, C., Kumar, N., & Jagadevan, S. (2019). A novel non-starch based cationic polymer as flocculant for harvesting microalgae. Bioresource Technology, 271, 383-390. doi:https://doi.org/10.1016/j.biortech.2018.09.073

Laamanen, C. A., Ross, G. M., & Scott, J. A. (2016). Flotation harvesting of microalgae. Renewable and Sustainable Energy Reviews, 58, 75-86. doi:https://doi.org/10.1016/j.rser.2015.12.293

Lai, Y. S., Zhou, Y., Martarella, R., Wang, Z., & Rittmann, B. E. (2017). Synergistic Integration of C12–C16 Cationic Surfactants for Flocculation and Lipid Extraction from Chlorella Biomass. ACS Sustainable Chemistry & Engineering, 5(1), 752-757. doi:10.1021/acssuschemeng.6b02095

Lama, S., Muylaert, K., Karki, T. B., Foubert, I., Henderson, R. K., & Vandamme, D. (2016). Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation. Bioresource Technology, 220, 464-470.

Laurent, L., Arnaud, H., Bruno, S., Jean-Philippe, S., & Olivier, B. (2009). Life-cycle assessment of biodiesel production from microalgae. Environmental Science & Technology, 43(17), 6475-6481.

Lee, Kim, Kim, Kwon, & Yoon. (1998). Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Letters in Applied Microbiology, 27(1), 14-18.

Lee, C., Chong, M., Robinson, J., & Binner, E. (2014). A Review on Development and Application of Plant-Based Bioflocculants and Grafted Bioflocculants. Industrial & Engineering Chemistry Research, 53, 18357-18369. doi:10.1021/ie5034045

Lee, I., & Han, J.-I. (2015). Simultaneous treatment (cell disruption and lipid extraction) of wet microalgae using hydrodynamic cavitation for enhancing the lipid yield. Bioresource Technology, 186, 246-251. doi:https://doi.org/10.1016/j.biortech.2015.03.045

Lee, P.-Y., Pahija, E., Liang, Y.-Z., Yeoh, K.-P., & Hui, C.-W. (2018). Population Balance Equation Applied to Microalgae Harvesting. In A. Friedl, J. J. Klemeš, S. Radl, P. S. Varbanov, & T. Wallek (Eds.), Computer Aided Chemical Engineering (Vol. 43, pp. 1299-1304): Elsevier.

Lee, S. Y., Cho, J. M., Chang, Y. K., & Oh, Y.-K. (2017). Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresource Technology, 244, 1317-1328. doi:https://doi.org/10.1016/j.biortech.2017.06.038

Li, Y., Xu, Y., Liu, L., Li, P., Yan, Y., Chen, T., . . . Wang, H. (2017). Flocculation mechanism of Aspergillus niger on harvesting of Chlorella vulgaris biomass. Algal Research, 25, 402-412.

Li, Z., Smith, K. H., & Stevens, G. W. The use of environmentally sustainable bio-derived solvents in solvent extraction applications—a review. Chinese Journal of Chemical Engineering.

Liu, Y., Chen, W., Xia, Q., Guo, B., Wang, Q., Liu, S., . . . Yu, H. (2017). Efficient Cleavage of Lignin-Carbohydrate Complexes and Ultrafast Extraction of Lignin Oligomers from Wood Biomass by Microwave-Assisted Treatment with Deep Eutectic Solvent. Chemsuschem, 10(8), 1692-1700.

Lo, T. C., Baird, M. H. I., & Hanson, C. (1983). Handbook of solvent extraction. Retrieved from http://books.google.com/books?id=J5AyAAAAMAAJ

Lopez-Exposito, P., Campano, C., van de Ven, T. G. M., Negro, C., & Blanco, A. (2019). Microalgae harvesting with the novel flocculant hairy cationic nanocrystalline cellulose. Colloids and Surfaces B: Biointerfaces, 178, 329-336. doi:https://doi.org/10.1016/j.colsurfb.2019.03.018

Lorenzen, J., Igl, N., Tippelt, M., Stege, A., Qoura, F., Sohling, U., & Brück, T. (2017). Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess and Biosystems Engineering, 40(6), 911-918. doi:10.1007/s00449-017-1755-5

Low, Y. J., & Lau, S. W. (2017). Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement. IOP Conference Series: Materials Science and Engineering, 206, 012073. doi:10.1088/1757-899x/206/1/012073

Lu, W., Alam, A., Pan, Y., Wu, J., Wang, Z., & Yuan, Z. (2016). A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Bioresource Technology, 218, 123-128.

Lu, W., Alam, M. A., Ying, P., Nock, W. J., Wang, Z., & Yuan, Z. (2016). Optimization of algal lipid extraction by mixture of ethyl acetate and ethanol via response surface methodology for biodiesel production. Korean Journal of Chemical Engineering, 33(9), 2575-2581.

Lu, W., Wang, Z., & Yuan, Z. (2015). Characteristics of lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds with mixture of ethyl acetate and ethanol for biodiesel production. Bioresource Technology, 191, 433-437.

Luo, S., Wu, X., Jiang, H., Yu, M., Liu, Y., Min, A., . . . Ruan, R. (2019). Edible fungi-assisted harvesting system for efficient microalgae bio-flocculation. Bioresource Technology, 282, 325-330. doi:https://doi.org/10.1016/j.biortech.2019.03.033

Mackay, S., Gomes, E., Holliger, C., Bauer, R., & Schwitzguébel, J.-P. (2015). Harvesting of Chlorella sorokiniana by co-culture with the filamentous fungus Isaria fumosorosea: A potential sustainable feedstock for hydrothermal gasification. Bioresource Technology, 185, 353-361. doi:https://doi.org/10.1016/j.biortech.2015.03.026

Maffei, G., Bracciale, M. P., Broggi, A., Zuorro, A., Santarelli, M. L., & Lavecchia, R. (2018). Effect of an enzymatic treatment with cellulase and mannanase on the structural properties of Nannochloropsis microalgae. Bioresource Technology, 249, 592-598. doi:https://doi.org/10.1016/j.biortech.2017.10.062

Maleki, H. M. G., Almassi, M., Hejazi, M. A., & Minaei, S. (2014). Harvesting of microalgae by electro-coagulation-flocculation for biodiesel production: an investigation of the effect of operational parameters and forecast model using response surface methodology. International Journal of Biosciences, 258-269.

Mathimani, T., & Mallick, N. (2018). A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions. Renewable and Sustainable Energy Reviews, 91, 1103-1120. doi:https://doi.org/10.1016/j.rser.2018.04.083

Matter, I., Bui, V., Jung, S.-C., Seo, J. Y., Kim, T., Lee, K., & Oh, Y.-K. (2019). Flocculation Harvesting Techniques for Microalgae: A Review. Applied Sciences, 9. doi:10.3390/app9153069

Menegazzo, M. L., & Fonseca, G. G. (2019). Biomass recovery and lipid extraction processes for microalgae biofuels production: A review. Renewable and Sustainable Energy Reviews, 107, 87-107. doi:https://doi.org/10.1016/j.rser.2019.01.064

Moser, B. R. (2011). Biodiesel Production, Properties, and Feedstocks.

Mubarak, M., Shaija, A., & Suchithra, T. V. (2015). A review on the extraction of lipid from microalgae for biodiesel production. Algal Research, 7(4), 117-123.

Mubarak, M., Shaija, A., & Suchithra, T. V. (2019). Flocculation: An effective way to harvest microalgae for biodiesel production. Journal of Environmental Chemical Engineering, 7(4), 103221. doi:https://doi.org/10.1016/j.jece.2019.103221

Muhammad, G., Alam, M. A., Mofijur, M., Jahirul, M. I., Lv, Y., Xiong, W., . . . Xu, J. (2021). Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renewable and Sustainable Energy Reviews, 135, 110209.

Muradov, N., Taha, M., Miranda, A. F., Wrede, D., Kadali, K., Gujar, A., . . . Mouradov, A. (2015). Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Biotechnology for Biofuels, 8(1), 24.

Muylaert, K., Vandamme, D., Foubert, I., & Brady, P. V. (2015). Harvesting of Microalgae by Means of Flocculation: Springer International Publishing.

Nguyen, T. D. P., Le, T. V. A., Show, P. L., Nguyen, T. T., Tran, M. H., Tran, T. N. T., & Lee, S. Y. (2019). Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent. Bioresource Technology, 272, 34-39. doi:https://doi.org/10.1016/j.biortech.2018.09.146

Noor, N., Enche Baharuddin, D., Shuhada, N., Naemah Sohif, H., Azlina, W., Karim, A., . . . Basiran, M. n. (2016). Marine microalgae flocculation using plant: The case of Nannochloropsis oculata and Moringa oleifera. Pakistan Journal of Botany, 48, 831-840.

Obeid, S., Beaufils, N., Camy, S., Takache, H., Ismail, A., & Pontalier, P. Y. (2018). Supercritical carbon dioxide extraction and fractionation of lipids from freeze-dried microalgae Nannochloropsis oculata and Chlorella vulgaris. Algal Research-Biomass Biofuels and Bioproducts, 34, 49-56. doi:10.1016/j.algal.2018.07.003

Oliveira, G. A., Carissimi, E., Monje-Ramírez, I., Velasquez-Orta, S. B., Rodrigues, R. T., & Ledesma, M. T. O. (2018). Comparison between coagulation-flocculation and ozone-flotation for Scenedesmus microalgal biomolecule recovery and nutrient removal from wastewater in a high-rate algal pond. Bioresource Technology, 259, 334-342. doi:https://doi.org/10.1016/j.biortech.2018.03.072

Onumaegbu, C., Mooney, J., Alaswad, A., & Olabi, A. G. (2018). Pre-treatment methods for production of biofuel from microalgae biomass. Renewable & Sustainable Energy Reviews, 93, 16-26.

Orr, V. C. A., & Rehmann, L. (2016). Ionic liquids for the fractionation of microalgae biomass. Current Opinion in Green and Sustainable Chemistry, 2, 22-27. doi:https://doi.org/10.1016/j.cogsc.2016.09.006

Pan, Y., Alam, M. A., Wang, Z., Huang, D., Hu, K., Chen, H., & Yuan, Z. (2017). One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent. Bioresource Technology, 238, 157-163. doi:https://doi.org/10.1016/j.biortech.2017.04.038

Pandey, A., Pathak, V. V., Kothari, R., Black, P. N., & Tyagi, V. V. (2019). Experimental studies on zeta potential of flocculants for harvesting of algae. Journal of Environmental Management, 231, 562-569. doi:https://doi.org/10.1016/j.jenvman.2018.09.096

Patel, A., Mikes, F., & Matsakas, L. (2018). An Overview of Current Pretreatment Methods Used to Improve Lipid Extraction from Oleaginous Micro-Organisms. Molecules, 23. doi:10.3390/molecules23071562

Patil, P. D., Dandamudi, K. P. R., Wang, J., Deng, Q., & Deng, S. (2018). Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. The Journal of Supercritical Fluids, 135, 60-68. doi:https://doi.org/10.1016/j.supflu.2017.12.019

Peng, C., Li, S., Zheng, J., Huang, S., & Li, D. (2017). Harvesting Microalgae with Different Sources of Starch-Based Cationic Flocculants. Applied Biochemistry and Biotechnology.

Pérez, L., Salgueiro, J. L., Maceiras, R., Cancela, Á., & Sánchez, Á. (2017). An effective method for harvesting of marine microalgae: pH induced flocculation. Biomass & Bioenergy, 97, 20-26.

Prajapati, S. K., Bhattacharya, A., Kumar, P., Malik, A., & Vijay, V. K. (2016). A method for simultaneous bioflocculation and pretreatment of algal biomass targeting improved methane production. Green Chemistry, 18(19), 5230-5238. doi:10.1039/C6GC01483F

Rahul, R., Kumar, S., Jha, U., & Sen, G. (2015). Cationic inulin: a plant based natural biopolymer for algal biomass harvesting. International Journal of Biological Macromolecules, 72, 868-874.

Rashid, N., Nayak, M., Lee, B., & Chang, Y.-K. (2019). Efficient microalgae harvesting mediated by polysaccharides interaction with residual calcium and phosphate in the growth medium. Journal of Cleaner Production, 234, 150-156. doi:https://doi.org/10.1016/j.jclepro.2019.06.154

Robles, M. A., Molina, G. E., Giménez, G. A., & Ibañez González, M. J. (1998). Downstream processing of algal polyunsaturated fatty acids. Biotechnology Advances, 16(3), 517-580.

Roselet, F., Burkert, J., & Abreu, P. C. (2016). Flocculation of Nannochloropsis oculata using a tannin-based polymer: bench scale optimization and pilot scale reproducibility. Biomass & Bioenergy, 87, 55-60.

Ruan, R., & Wang, J. (2016). Bio-Flocculation of Microalgae: Status and Prospects. Current Biotechnology, 4, 448-456. doi:10.2174/2211550104666151013203522

Rwehumbiza, V. M., Harrison, R., & Thomsen, L. (2012). Alum-induced flocculation of preconcentrated Nannochloropsis salina: Residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chemical Engineering Journal, 200–202, 168-175. doi:http://dx.doi.org/10.1016/j.cej.2012.06.008

Saifuddin, N. M., Amzar, A. B., & Puvunathan, P. (2016). Improvement in Oil Extraction from Microalgae/Algae for Biodiesel Production using Microwave Assisted Oil Extraction with Methyl Ester. Research Journal of Applied Sciences, Engineering and Technology, 13, 331-340. doi:10.19026/rjaset.13.2950

Salehizadeh, H., Yan, N., & Farnood, R. (2018). Recent advances in polysaccharide bio-based flocculants. Biotechnology Advances, 36(1), 92-119. doi:https://doi.org/10.1016/j.biotechadv.2017.10.002

Salim, S., Bosma, R., Vermuë, M. H., & Wijffels, R. H. (2011). Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology, 23(5), 849.

Salim, S., Kosterink, N. R., Tchetkoua Wacka, N. D., Vermuë, M. H., & Wijffels, R. H. (2014). Mechanism behind autoflocculation of unicellular green microalgae Ettlia texensis. Journal of Biotechnology, 174(1), 34-38.

Salim, S., Vermuë, M. H., & Wijffels, R. H. (2012). Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresource Technology, 118(4), 49.

Sanguino-Barajas, P. A., González-Delgado, A., & Barajas-Solano, A. (2018). Effect of flocculation technology on lipids, carbohydrates and proteins and extraction from Chlorella vulgaris. Contemporary Engineering Sciences, 11, 283-291. doi:10.12988/ces.2018.8118

Santana, A., Jesus, S., Larrayoz, M. A., & Filho, R. M. (2012). Supercritical Carbon Dioxide Extraction of Algal Lipids for the Biodiesel Production. Procedia Engineering, 42(10), 1755-1761.

Sati, H., Mitra, M., Mishra, S., & Baredar, P. (2019). Microalgal lipid extraction strategies for biodiesel production: A review. Algal Research, 38, 101413. doi:https://doi.org/10.1016/j.algal.2019.101413

Schuur, B., Brouwer, T., Smink, D., & Sprakel, L. M. J. (2019). Green solvents for sustainable separation processes. Current Opinion in Green and Sustainable Chemistry, 18, 57-65. doi:https://doi.org/10.1016/j.cogsc.2018.12.009

Selesu, N. F. H., Oliveira, T. V. D., Corrêa, D. O., Miyawaki, B., & Vieira, R. B. (2015). Maximum microalgae biomass harvesting via flocculation in large scale photobioreactor cultivation. Canadian Journal of Chemical Engineering, 94(2), n/a-n/a.

Setyawan, M., Mulyono, P., Sutijan, S., & Budiman, A. (2018). Comparison of Nannochloropsis sp. cells disruption between hydrodynamic cavitation and conventional extraction. MATEC Web of Conferences, 154, 01023. doi:10.1051/matecconf/201815401023

Shen, Y., Pei, Z. J., Yuan, W. Q., & Mao, E. R. (2009). Effect of nitrogen and extraction method on algae lipid yield. International Journal of Agricultural & Biological Engineering, 2(1), 51-57.

Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technology, 102(1), 26-34. doi:https://doi.org/10.1016/j.biortech.2010.06.057

Singh, G., & Patidar, S. (2018). Microalgae harvesting techniques: A review. Journal of Environmental Management, 217, 499-508. doi:10.1016/j.jenvman.2018.04.010

Srinuanpan, S., Chawpraknoi, A., Chantarit, S., Cheirsilp, B., & Prasertsan, P. (2018). A rapid method for harvesting and immobilization of oleaginous microalgae using pellet-forming filamentous fungi and the application in phytoremediation of secondary effluent. International Journal of Phytoremediation, 20(10), 1017-1024.

Taleb, A., Kandilian, R., Touchard, R., Montalescot, V., Rinaldi, T., Taha, S., . . . Pruvost, J. (2016). Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production. Bioresource Technology, 218, 480-490. doi:https://doi.org/10.1016/j.biortech.2016.06.086

Tiron, O., Bumbac, C., Manea, E., Stefanescu, M., & Nita, L. M. (2017). Overcoming Microalgae Harvesting Barrier by Activated Algae Granules. Scientific Reports, 7(1), 4646.

Toh, P. Y., Azenan, N. F., Wong, L., Ng, Y. S., Chng, L. M., Lim, J., & Chan, D. J. C. (2018). The Role of Cationic Coagulant-to-Cell Interaction in Dictating the Flocculation-Aided Sedimentation of Freshwater Microalgae. Arabian Journal for Science and Engineering, 43(5), 2217-2225. doi:10.1007/s13369-017-2584-1

Tommasi, E., Cravotto, G., Galletti, P., Grillo, G., Mazzotti, M., Sacchetti, G., . . . Tagliavini, E. (2017). Enhanced and Selective Lipid Extraction from the Microalga P. tricornutum by Dimethyl Carbonate and Supercritical CO2 Using Deep Eutectic Solvents and Microwaves as Pretreatment. ACS Sustainable Chemistry & Engineering, 5(9), 8316-8322. doi:10.1021/acssuschemeng.7b02074

Ummalyma, S. B., Gnansounou, E., Sukumaran, R. K., Sindhu, R., Pandey, A., & Sahoo, D. (2017). Bioflocculation: An alternative strategy for harvesting of microalgae - An overview. Bioresource Technology, 242, 227.

Ummalyma, S. B., Mathew, A. K., Pandey, A., & Sukumaran, R. K. (2016). Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation. Bioresour Technol, 213, 216-221. doi:10.1016/j.biortech.2016.03.114

Vandamme, D., Foubert, I., & Muylaert, K. (2013). Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology, 31(4), 233-239.

Vandamme, D., Gheysen, L., Muylaert, K., & Foubert, I. (2017). Impact of harvesting method on total lipid content and extraction efficiency for Phaeodactylum tricornutum. Separation & Purification Technology.

Vu, C. H. T., Chun, S.-J., Seo, S.-H., Cui, Y., Ahn, C.-Y., & Oh, H.-M. (2019). Bacterial community enhances flocculation efficiency of Ettlia sp. by altering extracellular polymeric substances profile. Bioresource Technology, 281, 56-65. doi:https://doi.org/10.1016/j.biortech.2019.02.062

Wahlstr?m, R., Hiltunen, J., Pitaluga de Souza Nascente Sirkka, M., Vuoti, S., & Kruus, K. (2016). Comparison of three deep eutectic solvents and 1-ethyl-3-methylimidazolium acetate in the pretreatment of lignocellulose: effect on enzyme stability, lignocellulose digestibility and one-pot hydrolysis. Rsc Advances, 6(72), 68100-68110.

Wan, C., Alam, M. A., Zhao, X. Q., Zhang, X. Y., Guo, S. L., Ho, S. H., . . . Bai, F. W. (2015). Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresource Technology, 184, 251-257.

Wang, L., Liang, W., Yu, J., Liang, Z., Ruan, L., & Zhang, Y. (2013). Flocculation of Microcystis aeruginosa using modified larch tannin. Environmental Science & Technology, 47(11), 5771-5777.

Wang, S.-K., Stiles, A. R., Guo, C., & Liu, C.-Z. (2015). Harvesting microalgae by magnetic separation: A review. Algal Research, 9, 178-185. doi:https://doi.org/10.1016/j.algal.2015.03.005

Wang, S., Yerkebulan, M., Abomohra, A. E.-F., El-Khodary, S., & Wang, Q. (2019). Microalgae harvest influences the energy recovery: A case study on chemical flocculation of Scenedesmus obliquus for biodiesel and crude bio-oil production. Bioresource Technology, 286, 121371. doi:https://doi.org/10.1016/j.biortech.2019.121371

Wang, Y., Zhuo, S., Li, N., & Yang, Y. (2011). Influences of Various Aluminum Coagulants on Algae Floc Structure, Strength and Flotation Effect. Procedia Environmental Sciences, 8(1), 75-80.

Wu, C., Xiao, Y., Lin, W., Li, J., Zhang, S., Zhu, J., & Rong, J. (2017). Aqueous enzymatic process for cell wall degradation and lipid extraction from Nannochloropsis sp. Bioresource Technology, 223, 312-316. doi:https://doi.org/10.1016/j.biortech.2016.10.063

Wu, C., Xiao, Y., Lin, W., Zhu, J., De la Hoz Siegler, H., Zong, M., & Rong, J. (2017). Surfactants assist in lipid extraction from wet Nannochloropsis sp. Bioresource Technology, 243, 793-799. doi:https://doi.org/10.1016/j.biortech.2017.07.010

Wu, J., Alam, M. A., Pan, Y., Huang, D., Wang, Z., & Wang, T. (2017). Enhanced extraction of lipids from microalgae with eco-friendly mixture of methanol and ethyl acetate for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 71, 323-329. doi:https://doi.org/10.1016/j.jtice.2016.12.039

Wu, Y.-H., Shen, L.-C., Hu, H.-Y., Hankins, N. P., & Huang, W. E. (2018). An efficient microalgal biomass harvesting method with a high concentration ratio using the polymer-surfactant aggregates process. Algal Research, 30, 86-93. doi:https://doi.org/10.1016/j.algal.2018.01.003

Yang, F., Xiang, W., Fan, J., Wu, H., Tao, L., & Long, L. (2016). High pH-induced flocculation of marine Chlorella sp. for biofuel production. Journal of Applied Phycology, 28(2), 1-10.

Yellapu, S. K., Bharti, Kaur, R., Kumar, L. R., Tiwari, B., Zhang, X., & Tyagi, R. D. (2018). Recent developments of downstream processing for microbial lipids and conversion to biodiesel. Bioresource Technology, 256, 515-528. doi:https://doi.org/10.1016/j.biortech.2018.01.129

Yoo, C., La, H. J., Kim, S. C., & Oh, H. M. (2015). Simple processes for optimized growth and harvest of Ettlia sp. by pH control using CO2 and light irradiation. Biotechnology & Bioengineering, 112(2), 288-296.

Yu, X., Dong, T., Zheng, Y., Miao, C., & Chen, S. (2015). Investigations on cell disruption of oleaginous microorganisms: Hydrochloric acid digestion is an effective method for lipid extraction. European Journal of Lipid Science and Technology, 117(5), 730-737. doi:10.1002/ejlt.201400195

Zhang, H., Liu, C., Ou, Y., Chen, T., Yang, L., & Hu, Z. (2019). Development of a helical coagulation reactor for harvesting microalgae. Journal of Bioscience and Bioengineering, 127(4), 447-450. doi:https://doi.org/10.1016/j.jbiosc.2018.09.012

Zhang, X., Yan, S., Tyagi, R. D., Drogui, P., & Surampalli, R. Y. (2014). Ultrasonication assisted lipid extraction from oleaginous microorganisms. Bioresource Technology, 158, 253-261. doi:https://doi.org/10.1016/j.biortech.2014.01.132

Zhang, X., Zhao, X., Wan, C., Chen, B., & Bai, F. (2016). Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1. Algal Research, 16, 427-433. doi:https://doi.org/10.1016/j.algal.2016.04.002

Zhang, Y., Kong, X., Wang, Z., Sun, Y., Zhu, S., Li, L., & Lv, P. (2018). Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp. Renewable Energy, 125, 1049-1057. doi:https://doi.org/10.1016/j.renene.2018.01.078

Zhou, W., Ruan, R., & Wang, J. (2015). Bio-Flocculation of Microalgae: Status and Prospects. Current Biotechnology, 4(4), -.

Zhu, L., Hiltunen, E., & Li, Z. (2017). Using magnetic materials to harvest microalgal biomass: evaluation of harvesting and detachment efficiency. Environmental Technology, 1-12. doi:10.1080/09593330.2017.1415379

Zhu, L., Li, Z., & Hiltunen, E. (2018). Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnology for Biofuels, 11(1), 183.

Zou, X., Li, Y., Xu, K., Wen, H., Shen, Z., & Ren, X. (2018). Microalgae harvesting by buoy-bead flotation process using Bioflocculant as alternative to chemical Flocculant. Algal Research, 32, 233-240. doi:https://doi.org/10.1016/j.algal.2018.04.010

 

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



9
Save
0
Citation
65
View
0
Share