Advancement in Microalgae Biomass Harvesting by Flocculation Technologies and Lipid Extraction for Biofuel Production: Research and Patent Progress
Md Sahidur Rahman1, Mohammad Abu Islam2, Md Moniruzzaman3
Energy Environment & Economy 2(1) 1-23 https://doi.org/10.25163/energy.2110136
Submitted: 09 May 2024 Revised: 10 August 2024 Published: 14 August 2024
Abstract
Microalgae research has gained enormous research interest since last few decades because of the diverse number of worthwhile applications and is emerging as a biomass source to produce a variety of biofuels and other value-added products. However, present downstream processing techniques are not fully developed to defeat the techno-economic barriers, among which microalgae harvesting is the major bottleneck for commercialization. Flocculation is considered a superior method to harvest microalgae from growth medium because of harvesting efficiency, operational economics, and technical feasibility. Albeit pretreatment method is important to disrupt the cell wall of microalgae to enhance the lipid extraction. Therefore, this review presents the advanced progress of various flocculation-harvesting methods with special importance of innovative bio flocculation, underlying mechanism of microalgae and flocculation, their effect on lipids and FAME extraction, industrial patent progress and cell disruption methods with the influence of green chemistry solvents for sustainable biodiesel production.
Keywords: Biofuel, microalgae harvesting, flocculation, pretreatment, solvent, lipids.
References
Abo Markeb, A., Llimós-Turet, J., Ferrer, I., Blánquez, P., Alonso, A., Sánchez, A., . . . Font, X. (2019). The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Research, 159, 490-500. doi:https://doi.org/10.1016/j.watres.2019.05.023
Adam, F., Abert-Vian, M., Peltier, G., & Chemat, F. (2012). “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technology, 114, 457-465. doi:https://doi.org/10.1016/j.biortech.2012.02.096
Al-Ameri, M., & Al-Zuhair, S. (2019). Using switchable solvents for enhanced, simultaneous microalgae oil extraction-reaction for biodiesel production. Biochemical Engineering Journal, 141, 217-224. doi:https://doi.org/10.1016/j.bej.2018.10.017
Alam, M. A., Wan, C., Zhao, X.-Q., Chen, L.-J., Chang, J.-S., & Bai, F.-W. (2015). Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7. Journal of Hazardous Materials, 289, 38-45. doi:https://doi.org/10.1016/j.jhazmat.2015.02.012
Alkarawi, M. A. S., Caldwell, G. S., & Lee, J. G. M. (2018). Continuous harvesting of microalgae biomass using foam flotation. Algal Research, 36, 125-138. doi:https://doi.org/10.1016/j.algal.2018.10.018
Ansari, F. A., Gupta, S. K., Nasr, M., Rawat, I., & Bux, F. (2018). Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: A multivariate approach. Journal of Cleaner Production, 182, 634-643. doi:https://doi.org/10.1016/j.jclepro.2018.02.098
Behera, B., & Balasubramanian, P. (2019). Natural plant extracts as an economical and ecofriendly alternative for harvesting microalgae. Bioresource Technology, 283, 45-52. doi:https://doi.org/10.1016/j.biortech.2019.03.070
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306.
Demi?Rbas, A., & Demi?Rbas, M. F. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion & Management, 52(1), 163-170.
Dong, T., Knoshaug, E. P., Pienkos, P. T., & Laurens, L. M. L. (2016). Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review. Applied Energy, 177, 879-895. doi:https://doi.org/10.1016/j.apenergy.2016.06.002
Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Yadavalli, R., Kolapalli, B., . . . Kuppam, C. (2018). Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews, 94, 49-68. doi:https://doi.org/10.1016/j.rser.2018.05.012
Fu, X., Liu, Y., Zhu, L., & Mou, H. (2019). Flocculation activity of carp protamine in microalgal cells. Aquaculture, 505, 150-156. doi:https://doi.org/10.1016/j.aquaculture.2019.02.052
Fuad, N., Omar, R., Kamarudin, S., Harun, R., Idris, A., & Wan Azlina, W. A. K. G. (2018). Effective use of tannin based natural biopolymer, AFlok-BP1 to harvest marine microalgae Nannochloropsis sp. Journal of Environmental Chemical Engineering, 6(4), 4318-4328. doi:https://doi.org/10.1016/j.jece.2018.06.041
Garoma, T., & Janda, D. (2016). Investigation of the effects of microalgal cell concentration and electroporation, microwave and ultrasonication on lipid extraction efficiency. Renewable Energy, 86, 117-123. doi:https://doi.org/10.1016/j.renene.2015.08.009
Günerken, E., D'Hondt, E., Eppink, M. H. M., Garcia-Gonzalez, L., Elst, K., & Wijffels, R. H. (2015). Cell disruption for microalgae biorefineries. Biotechnology Advances, 33(2), 243-260. doi:https://doi.org/10.1016/j.biotechadv.2015.01.008
Ho, S.-H., Chiu, S.-Y., Kao, C.-Y., Chen, T.-Y., Chang, Y.-B., Chang, J.-S., & Lin, C.-S. (2017). Ferrofluid-assisted rapid and directional harvesting of marine microalgal Chlorella sp. used for biodiesel production. Bioresource Technology, 244, 1337-1340. doi:https://doi.org/10.1016/j.biortech.2017.05.110
Howlader, M. S., Rai, N., & Todd French, W. (2018). Improving the lipid recovery from wet oleaginous microorganisms using different pretreatment techniques. Bioresource Technology, 267, 743-755. doi:https://doi.org/10.1016/j.biortech.2018.07.092
Jeevan Kumar, S. P., Vijay Kumar, G., Dash, A., Scholz, P., & Banerjee, R. (2017). Sustainable green solvents and techniques for lipid extraction from microalgae: A review. Algal Research, 21, 138-147. doi:https://doi.org/10.1016/j.algal.2016.11.014
Kadir, W. N. A., Lam, M. K., Uemura, Y., Lim, J. W., & Lee, K. T. (2018). Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review. Energy Conversion and Management, 171, 1416-1429. doi:https://doi.org/10.1016/j.enconman.2018.06.074
Kumar Gupta, S., Kumar, N. M., Guldhe, A., Ahmad Ansari, F., Rawat, I., Nasr, M., & Bux, F. (2018). Wastewater to biofuels: Comprehensive evaluation ofvarious flocculants on biochemical composition and yield of microalgae. Ecological Engineering, 117, 62-68. doi:https://doi.org/10.1016/j.ecoleng.2018.04.005
Kumar, N., Banerjee, C., Kumar, N., & Jagadevan, S. (2019). A novel non-starch based cationic polymer as flocculant for harvesting microalgae. Bioresource Technology, 271, 383-390. doi:https://doi.org/10.1016/j.biortech.2018.09.073
Laamanen, C. A., Ross, G. M., & Scott, J. A. (2016). Flotation harvesting of microalgae. Renewable and Sustainable Energy Reviews, 58, 75-86. doi:https://doi.org/10.1016/j.rser.2015.12.293
Lee, I., & Han, J.-I. (2015). Simultaneous treatment (cell disruption and lipid extraction) of wet microalgae using hydrodynamic cavitation for enhancing the lipid yield. Bioresource Technology, 186, 246-251. doi:https://doi.org/10.1016/j.biortech.2015.03.045
Lee, S. Y., Cho, J. M., Chang, Y. K., & Oh, Y.-K. (2017). Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresource Technology, 244, 1317-1328. doi:https://doi.org/10.1016/j.biortech.2017.06.038
Lo, T. C., Baird, M. H. I., & Hanson, C. (1983). Handbook of solvent extraction. Retrieved from http://books.google.com/books?id=J5AyAAAAMAAJ
Lopez-Exposito, P., Campano, C., van de Ven, T. G. M., Negro, C., & Blanco, A. (2019). Microalgae harvesting with the novel flocculant hairy cationic nanocrystalline cellulose. Colloids and Surfaces B: Biointerfaces, 178, 329-336. doi:https://doi.org/10.1016/j.colsurfb.2019.03.018
Luo, S., Wu, X., Jiang, H., Yu, M., Liu, Y., Min, A., . . . Ruan, R. (2019). Edible fungi-assisted harvesting system for efficient microalgae bio-flocculation. Bioresource Technology, 282, 325-330. doi:https://doi.org/10.1016/j.biortech.2019.03.033
Mackay, S., Gomes, E., Holliger, C., Bauer, R., & Schwitzguébel, J.-P. (2015). Harvesting of Chlorella sorokiniana by co-culture with the filamentous fungus Isaria fumosorosea: A potential sustainable feedstock for hydrothermal gasification. Bioresource Technology, 185, 353-361. doi:https://doi.org/10.1016/j.biortech.2015.03.026
Maffei, G., Bracciale, M. P., Broggi, A., Zuorro, A., Santarelli, M. L., & Lavecchia, R. (2018). Effect of an enzymatic treatment with cellulase and mannanase on the structural properties of Nannochloropsis microalgae. Bioresource Technology, 249, 592-598. doi:https://doi.org/10.1016/j.biortech.2017.10.062
Mathimani, T., & Mallick, N. (2018). A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions. Renewable and Sustainable Energy Reviews, 91, 1103-1120. doi:https://doi.org/10.1016/j.rser.2018.04.083
Menegazzo, M. L., & Fonseca, G. G. (2019). Biomass recovery and lipid extraction processes for microalgae biofuels production: A review. Renewable and Sustainable Energy Reviews, 107, 87-107. doi:https://doi.org/10.1016/j.rser.2019.01.064
Moser, B. R. (2011). Biodiesel Production, Properties, and Feedstocks.
Mubarak, M., Shaija, A., & Suchithra, T. V. (2019). Flocculation: An effective way to harvest microalgae for biodiesel production. Journal of Environmental Chemical Engineering, 7(4), 103221. doi:https://doi.org/10.1016/j.jece.2019.103221
Nguyen, T. D. P., Le, T. V. A., Show, P. L., Nguyen, T. T., Tran, M. H., Tran, T. N. T., & Lee, S. Y. (2019). Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent. Bioresource Technology, 272, 34-39. doi:https://doi.org/10.1016/j.biortech.2018.09.146
Oliveira, G. A., Carissimi, E., Monje-Ramírez, I., Velasquez-Orta, S. B., Rodrigues, R. T., & Ledesma, M. T. O. (2018). Comparison between coagulation-flocculation and ozone-flotation for Scenedesmus microalgal biomolecule recovery and nutrient removal from wastewater in a high-rate algal pond. Bioresource Technology, 259, 334-342. doi:https://doi.org/10.1016/j.biortech.2018.03.072
Orr, V. C. A., & Rehmann, L. (2016). Ionic liquids for the fractionation of microalgae biomass. Current Opinion in Green and Sustainable Chemistry, 2, 22-27. doi:https://doi.org/10.1016/j.cogsc.2016.09.006
Pan, Y., Alam, M. A., Wang, Z., Huang, D., Hu, K., Chen, H., & Yuan, Z. (2017). One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent. Bioresource Technology, 238, 157-163. doi:https://doi.org/10.1016/j.biortech.2017.04.038
Pandey, A., Pathak, V. V., Kothari, R., Black, P. N., & Tyagi, V. V. (2019). Experimental studies on zeta potential of flocculants for harvesting of algae. Journal of Environmental Management, 231, 562-569. doi:https://doi.org/10.1016/j.jenvman.2018.09.096
Patil, P. D., Dandamudi, K. P. R., Wang, J., Deng, Q., & Deng, S. (2018). Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. The Journal of Supercritical Fluids, 135, 60-68. doi:https://doi.org/10.1016/j.supflu.2017.12.019
Rashid, N., Nayak, M., Lee, B., & Chang, Y.-K. (2019). Efficient microalgae harvesting mediated by polysaccharides interaction with residual calcium and phosphate in the growth medium. Journal of Cleaner Production, 234, 150-156. doi:https://doi.org/10.1016/j.jclepro.2019.06.154
Rwehumbiza, V. M., Harrison, R., & Thomsen, L. (2012). Alum-induced flocculation of preconcentrated Nannochloropsis salina: Residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chemical Engineering Journal, 200–202, 168-175. doi:http://dx.doi.org/10.1016/j.cej.2012.06.008
Salehizadeh, H., Yan, N., & Farnood, R. (2018). Recent advances in polysaccharide bio-based flocculants. Biotechnology Advances, 36(1), 92-119. doi:https://doi.org/10.1016/j.biotechadv.2017.10.002
Sati, H., Mitra, M., Mishra, S., & Baredar, P. (2019). Microalgal lipid extraction strategies for biodiesel production: A review. Algal Research, 38, 101413. doi:https://doi.org/10.1016/j.algal.2019.101413
Schuur, B., Brouwer, T., Smink, D., & Sprakel, L. M. J. (2019). Green solvents for sustainable separation processes. Current Opinion in Green and Sustainable Chemistry, 18, 57-65. doi:https://doi.org/10.1016/j.cogsc.2018.12.009
Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technology, 102(1), 26-34. doi:https://doi.org/10.1016/j.biortech.2010.06.057
Taleb, A., Kandilian, R., Touchard, R., Montalescot, V., Rinaldi, T., Taha, S., . . . Pruvost, J. (2016). Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production. Bioresource Technology, 218, 480-490. doi:https://doi.org/10.1016/j.biortech.2016.06.086
Vu, C. H. T., Chun, S.-J., Seo, S.-H., Cui, Y., Ahn, C.-Y., & Oh, H.-M. (2019). Bacterial community enhances flocculation efficiency of Ettlia sp. by altering extracellular polymeric substances profile. Bioresource Technology, 281, 56-65. doi:https://doi.org/10.1016/j.biortech.2019.02.062
Wang, S.-K., Stiles, A. R., Guo, C., & Liu, C.-Z. (2015). Harvesting microalgae by magnetic separation: A review. Algal Research, 9, 178-185. doi:https://doi.org/10.1016/j.algal.2015.03.005
Wang, S., Yerkebulan, M., Abomohra, A. E.-F., El-Khodary, S., & Wang, Q. (2019). Microalgae harvest influences the energy recovery: A case study on chemical flocculation of Scenedesmus obliquus for biodiesel and crude bio-oil production. Bioresource Technology, 286, 121371. doi:https://doi.org/10.1016/j.biortech.2019.121371
Wu, C., Xiao, Y., Lin, W., Li, J., Zhang, S., Zhu, J., & Rong, J. (2017). Aqueous enzymatic process for cell wall degradation and lipid extraction from Nannochloropsis sp. Bioresource Technology, 223, 312-316. doi:https://doi.org/10.1016/j.biortech.2016.10.063
Wu, C., Xiao, Y., Lin, W., Zhu, J., De la Hoz Siegler, H., Zong, M., & Rong, J. (2017). Surfactants assist in lipid extraction from wet Nannochloropsis sp. Bioresource Technology, 243, 793-799. doi:https://doi.org/10.1016/j.biortech.2017.07.010
Wu, J., Alam, M. A., Pan, Y., Huang, D., Wang, Z., & Wang, T. (2017). Enhanced extraction of lipids from microalgae with eco-friendly mixture of methanol and ethyl acetate for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 71, 323-329. doi:https://doi.org/10.1016/j.jtice.2016.12.039
Wu, Y.-H., Shen, L.-C., Hu, H.-Y., Hankins, N. P., & Huang, W. E. (2018). An efficient microalgal biomass harvesting method with a high concentration ratio using the polymer-surfactant aggregates process. Algal Research, 30, 86-93. doi:https://doi.org/10.1016/j.algal.2018.01.003
Yellapu, S. K., Bharti, Kaur, R., Kumar, L. R., Tiwari, B., Zhang, X., & Tyagi, R. D. (2018). Recent developments of downstream processing for microbial lipids and conversion to biodiesel. Bioresource Technology, 256, 515-528. doi:https://doi.org/10.1016/j.biortech.2018.01.129
Zhang, H., Liu, C., Ou, Y., Chen, T., Yang, L., & Hu, Z. (2019). Development of a helical coagulation reactor for harvesting microalgae. Journal of Bioscience and Bioengineering, 127(4), 447-450. doi:https://doi.org/10.1016/j.jbiosc.2018.09.012
Zhang, X., Yan, S., Tyagi, R. D., Drogui, P., & Surampalli, R. Y. (2014). Ultrasonication assisted lipid extraction from oleaginous microorganisms. Bioresource Technology, 158, 253-261. doi:https://doi.org/10.1016/j.biortech.2014.01.132
Zhang, X., Zhao, X., Wan, C., Chen, B., & Bai, F. (2016). Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1. Algal Research, 16, 427-433. doi:https://doi.org/10.1016/j.algal.2016.04.002
Zhang, Y., Kong, X., Wang, Z., Sun, Y., Zhu, S., Li, L., & Lv, P. (2018). Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp. Renewable Energy, 125, 1049-1057. doi:https://doi.org/10.1016/j.renene.2018.01.078
Zou, X., Li, Y., Xu, K., Wen, H., Shen, Z., & Ren, X. (2018). Microalgae harvesting by buoy-bead flotation process using Bioflocculant as alternative to chemical Flocculant. Algal Research, 32, 233-240. doi:https://doi.org/10.1016/j.algal.2018.04.010
View Dimensions
View Altmetric
Save
Citation
View
Share