Antidiabetic and Toxicological Evaluation of Ostodes Pauciflora merr. Seed (kop nut) Oil, A Potential Functional Food Alternative
Shahrina Shah Jahan1, Wan Amir Nizam Wan Ahmad 2, Rafidah Husen1
Journal of Angiotherapy 9(1) 1-8 https://doi.org/10.25163/angiotherapy.9110153
Submitted: 22 December 2025 Revised: 08 February 2025 Published: 12 February 2025
Abstract
Background: Ostodes pauciflora Merr, an indigenous seed from Borneo, belongs to the Euphorbiaceae family, known for its pharmacological properties. While previous studies have explored its antioxidant and antimicrobial activities, the seed's potential antidiabetic effects remain unexamined. This study investigates the toxicity and antidiabetic properties of O. pauciflora seed oil, focusing on its fatty acid extracts. Methods: The study employed both in vitro and in vivo approaches. Toxicity was assessed using a brine shrimp lethality assay (BSLA) and acute toxicity testing following OECD Guideline 425. The antidiabetic potential was evaluated through an α-amylase inhibition assay and an acute diabetic model in Sprague Dawley rats. The in vivo study involved high-fat diet-induced diabetic rats treated with varying doses of fatty acid extracts from O. pauciflora seed (FAOPS). Fasting blood glucose and cholesterol levels were measured at multiple time points post-treatment. Results: FAOPS exhibited significant α-amylase inhibitory activity, with petroleum ether extract showing the highest inhibition (67.46±0.07%). Acute toxicity testing indicated no lethal effects up to 2000 mg/kg. In diabetic rats, FAOPS administration significantly reduced blood glucose levels within 24 hours, demonstrating dose-dependent effects comparable to metformin. Conclusion: O. pauciflora seed oil shows promising antidiabetic potential with no observed acute toxicity. These findings support its potential as a functional food ingredient for diabetes management, warranting further investigation into its long-term efficacy and mechanism of action.
Keywords: Ostodes pauciflora Merr., Antidiabetic potential, Alpha-amylase inhibition, Brine shrimp lethality assay, Functional food
References
Abd Mutalib S.A, N., Hussin Haji Zain, M., Asari, A., Maulidiani, M., Nazif Aziz, A., Yusuf, N., & Huda Abdul Wahab, N. (2023). Malaysian Medicinal Plants (Euphorbia milii) As A Drug Alternative Source For Anti-Gout Therapy (Tumbuhan Perubatan Malaysia (Euphorbia milii) sebagai Sumber Ubat Alternatif untuk Terapi Anti-gout). In Malaysian Journal of Analytical Sciences Vol. 27.
Access, O., Carballo, J. L., L Hernández-Inda, Z., Pérez, P., & García-Grávalos, M. D. (2002). BMC Biotechnology A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products.
Alqahtani, A. S., Hidayathulla, S., Rehman, M. T., Elgamal, A. A., Al-Massarani, S., Razmovski-Naumovski, V., Alqahtani, M. S., El Dib, R. A., & Alajmi, M. F. (2020). Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules, 10(1).
Alves Da Paz, D. P., Nagamine, M. K., Grande, M. P. Del, Leite, J. V. P., Sobreira, F. M. G., Bacchi, E. M., & Zaidan Dagli, M. L. (2020). Inhibitory Effects of Euphorbia tirucalli Lineu (Euphorbiaceae) Diluted Latex on Human and Canine Melanoma Cells. Evidence-Based Complementary and Alternative Medicine, 2020.
Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress—A concise review. In Saudi Pharmaceutical Journal. 24(5), pp. 547–553.
Bilang, M., Mamang, M., Salengke, S., Putra, R. P., & Reta, R. (2018). Elimination of toxalbumin in candlenut seed (Aleurites moluccana (L.) Willd) using wet heating at high temperature and identification of compounds in the candlenut glycoprotein. International Journal of Agriculture System, 6(2), 89.
Bastos, M., Lima, M. R. F., Conserva, L. M., Andrade, V. S., Rocha, E. M. M., & Lemos, R. P. L. (2009). Studies on the antimicrobial activity and brine shrimp toxicity of Zeyheria tuberculosa (Vell.) Bur. (Bignoniaceae) extracts and their main constituents. Annals of Clinical Microbiology and Antimicrobials, 8. https://doi.org/10.1186/1476-0711-8-16.
Chen H, Zhang R, Luo RH, Yang LM, Wang RR, Hao XJ and Zhen YT (2017). Anti-HIV activities and mechanism of 12- O-tricosanoylphorbol-20-acetate, a novel phorbol ester from Ostodes katharinae. Molecules, 22(9): 1498.
Claus, C., & Sorgeloos, A. (1981). Proposal for a Short-Term Toxicity Test with Artemia nauplii. In Ecotoxicolocy And Environmental Safety (Vol. 5).
Corcoran C, Jacobs TF. Metformin. (2023). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan
Darenskaya, M. A., Kolesnikova, L. I., & Kolesnikov, S. I. (2021). Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. In Bulletin of Experimental Biology and Medicine. 171(2), pp. 179–189).
Déciga-Campos M, Rivero-Cruz I, Arriaga-Alba M, Castañeda-Corral G, Angeles-López GE, Navarrete A, Mata R (2007). Acute toxicity and mutagenic activity of Mexican plants used in traditional medicine. J Ethnopharmacol, 110:334-342.
Forouhi, N. G., Misra, A., Mohan, V., Taylor, R., & Yancy, W. (2018). Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ (Online), 361.
Gervasi, T., Barreca, D., Laganà, G., & Mandalari, G. (2021). Health benefits related to tree nut consumption and their bioactive compounds. In International Journal of Molecular Sciences. 22(11).
Huang, Y.-S., Lu, Y., Chen, C.-H., Lee, K.-H., Chen, D.-F., 2019. Potent anti-HIV ingenane diterpenoids from Euphorbia ebracteolata. J. Nat. Prod. 82, 1587–1592.
Inzucchi S.E., (2002). Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA 3, 360–372.
Kifle, Z. D., Debeb, S. G., & Belayneh, Y. M. (2021). In Vitro α -Amylase and α -Glucosidase Inhibitory and Antioxidant Activities of the Crude Extract and Solvent Fractions of Hagenia abyssinica Leaves. BioMed Research International, 2021.
Kostev, K., Jacob L. (2018). Association between depression and persistence with oral antihyperglycemic drugs in type 2 diabetes mellitus patients in Germany. Psychiat. Res. 261, 90–93.
Liang, Y., An, L., Shi, Z., Zhang, X., Xie, C., Tuerhong, M., Song, Z., Ohizumi, Y., Lee, D., Shuai, L., Xu, J., Guo, Y., 2019. Bioactive diterpenoids from the stems of Euphorbia antiquorum. J. Nat. Prod. 82, 1634–1644.
Luo, W., Zhou, J., Yang, X., Wu, R., Liu, H., Shao, H., Huang, B., Kang, X., Yang, L., & Liu, D. (2022). A Chinese medical nutrition therapy diet accompanied by intermittent energy restriction alleviates type 2 diabetes by enhancing pancreatic islet function and regulating gut microbiota composition. Food Research International, 161.
Martha Perez-Gutierrez, R., & Damian-Guzman, M. (2012). Meliacinolin: A Potent α-Glucosidase and α-Amylase Inhibitor Isolated from Azadirachta indica Leaves and in Vivo Antidiabetic Property in Streptozotocin-Nicotinamide-Induced Type 2 Diabetes in Mice. Biol. Pharm. Bull 35(9).
Mavundza, E. J., Street, R., & Baijnath, H. (2022). A review of the ethnomedicinal, pharmacology, cytotoxicity and phytochemistry of the genus Euphorbia in southern Africa. South African Journal of Botany. 144, pp. 403–418.
Md Norodin, N. S., Md Salleh, L., Yusof, N., Mustapha, N. M., Kamarulzaman, F., Zahari, M. A. M., & Bakeri, N. A. (2018). Inhibitory effects of Swietenia mahagoni seeds extract on Α-glucosidase and Α-amylase. International Journal of Engineering, Transactions B: Applications, 31(8), 1308–1317.
Med, P. J., & July, S. (2022). Aymen Owais Ghauri et al Vol. 38, Issue 6. www.pjms.org.pk1669
Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL (2007). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 45(5): 31-4.
Michael AS, Thompson CG, Abramovitz M (1956). Artemia salina as a test organism for a bioassay. Science, 123:464.
Mwine J, Van Damme P (2010). Euphorbia tirucalli L. (Euphorbiaceae) – The miracle tree: Current status of available knowledge. Scientific Research and Essays Vol. 6(23), pp. 4905-4914.
Noordin, L., Ahmad, W. A. N. W., Nor, N. A. M., Bakar, N. H. A., & Ugusman, A. (2022). Etlingera elatior Flower Aqueous Extract Protects against Oxidative Stress-Induced Nephropathy in a Rat Model of Type 2 Diabetes. Evidence-Based Complementary and Alternative Medicine, 2022.
Novelli, E. L., Diniz, Y. S., Galhardi, C. M., Ebaid, G. M., Rodrigues, H. G., Mani, F., Fernandes, A. A., Cicogna, A. C., & Novelli Filho, J. L. (2007). Anthropometrical parameters and markers of obesity in rats. Laboratory Animals, 41(1), 111–119.
Ntungwe N, E., Domínguez-Martín, E. M., Roberto, A., Tavares, J., Isca, V. M. S., Pereira, P., Cebola, M.-J., & Rijo, P. (2020). Artemia species: An Important Tool to Screen General Toxicity Samples. Current Pharmaceutical Design, 26(24), 2892–2908.
Nursyuhana R, Ramli NS, Safuan S, Noordin L, Ahmad WANW. (2016). Histopathological alterations in organ structures of induced-obese rats feed with high-fat diet. Ann Microsc. 15:38–48.
OECD (2022). OECD Guidelines for the Testing of Chemicals, Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure. http://www.oecd.org/termsandconditions/.
Ogello EO, Kembenya E, Githukia CM, Betty M, Munguti JM (2014). The occurrence of the brine shrimp, Artemia franciscana (Kellog 1906) in Kenya and the potential economic impacts among Kenyan coastal communities. Int J Fisheries Aquatic Studies, 1(5):151-6.
Ogunyemi, O. M., Gyebi, G. A., Saheed, A., Paul, J., Nwaneri-Chidozie, V., Olorundare, O., Adebayo, J., Koketsu, M., Aljarba, N., Alkahtani, S., Batiha, G. E. S., & Olaiya, C. O. (2022). Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Frontiers in Molecular Biosciences, 9.
Poovitha, S., & Parani, M. (2016). In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complementary and Alternative Medicine, 16.
Qi, S.H., Guo, J.W., Wu, D.G., Luo, X.D. (2004). Study on the chemical constituents of Ostodes paniculata. Nat Prod Res Dev 16, 210–212.
Sakai, F. D., Khong, H. Y., & Nyokat, N. (2022). Phytochemicals contents and antibacterial properties of different solvent extracts from barks and leaves of Ostodes pauciflora Merr. Medicinal Plants. International Journal of Phytomedicines and Related Industries, 14(2), 312–322.
Sleet RB, Brendel K (1983). Improved methods for harvesting and counting synchronous populations of Artemia nauplii for use in developmental toxicology. Ecotoxicol Env Safety, 7:435-446
Vallinayaki, K. N., Shanmugam, R., & Munusamy, T. (2024). Biosynthesis of Strontium Nanoparticles Using Mimosa pudica and its Antioxidant Effect. Journal of Pharmacy and Bioallied Sciences, 16(Suppl 2), S1330–S1334.
Vasas, A., Hohmann, J., 2014. Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008-2012). Chem. Rev. 114, 8579–8612.
Wanyoike, G. N., Chhabra, S. C., Lang’at-Thoruwa, C. C., & Omar, S. A. (2004). Brine shrimp toxicity and antiplasmodial activity of five Kenyan medicinal plants. Journal of Ethnopharmacology, 90(1), 129–133.
Webster, G.L. (2014). Euphorbiaceae. In: Kubitzki, K. (Ed.), The Families and Genera of Vascular Plants, vol. 11. Springer, Heidelberg, pp. 51–216.
Xu, Y., Tang, P., Zhu, M., Wang, Y., Sun, D., Li, H., & Chen, L. (2021). Diterpenoids from the genus Euphorbia: Structure and biological activity (2013–2019). In Phytochemistry Vol. 190. Elsevier Ltd.
Yan, X.-L., Sang, J., Chen, S.-X., Li, W., Tang, G.-H., Gan, L.-S., Yin, S. (2019). Euphorkanlide A, a highly modified ingenane diterpenoid with a C24 appendage from Euphorbia kansuensis. Org. Lett. 21, 4128–4131.
Yang, C., Mao, H., Qi, X., Zhang, Y., Cao, Y., Tao, L., Dong, X., & Zhang, Y. (2024). Chemical constituents from the stems of Ostodes paniculata Bl. (Euphorbiaceae). Biochemical Systematics and Ecology, 113.
Zhou, X., Zhou, J., Ban, Q., Zhang, M., & Ban, B. (2024). Effects of metformin on the glucose regulation, lipid levels and gut microbiota in high-fat diet with streptozotocin induced type 2 diabetes mellitus rats. Endocrine 86, 163-172.
View Dimensions
View Altmetric
Save
Citation
View
Share