Molecular Epidemiology and Resistance Mechanisms of Extensively Drug-Resistant Gram-Negative Bacteria: Challenges and Emerging Therapeutic Strategies
Bikom Chandra Singha1*, Abul Kalam Azad2
Paradise 1 (1) 1-8 https://doi.org/10.25163/paradise.1110358
Submitted: 01 June 2025 Revised: 17 March 2025 Published: 19 March 2025
Abstract
Background: The emergence of extensively drug-resistant (XDR) gram-negative bacteria poses a major global health challenge, contributing to increased mortality, prolonged hospital stays, and escalating healthcare costs. Over the past two decades, advances in whole-genome sequencing and genotyping have improved our understanding of the development and spread of antibiotic resistance. Resistance in XDR infections arises from mechanisms such as target site mutations, enzymatic degradation of antibiotics, and alterations in membrane permeability. Methods: This study examines the epidemiology and molecular resistance mechanisms of three clinically significant gram-negative pathogens: XDR Pseudomonas aeruginosa, XDR Acinetobacter baumannii, and carbapenem-resistant Enterobacteriaceae (CRE). Literature-based evidence and molecular findings were analyzed to identify resistance patterns, emerging clones, and therapeutic challenges. Results: The findings indicate that these pathogens, classified as “critical threats” by the World Health Organization, often necessitate last-resort antibiotics such as polymyxins and novel β-lactam/β-lactamase inhibitor combinations. Resistance mechanisms differ among species but commonly involve enzymatic activity, genetic mutations, and permeability changes. Molecular diagnostics have shown promise in guiding combination therapies, particularly against metallo-β-lactamase-producing CRE, though routine use remains limited. Several novel antimicrobials—including ceftolozane- tazobactam, plazomicin, vaborbactam, and avibactam offer alternative therapeutic options. Conclusion: The growing threat of XDR gram-negative bacteria underscores the urgent need for ongoing global surveillance, improved diagnostic strategies, and deeper investigation into the molecular epidemiology of resistance. Strengthening antibiotic stewardship and advancing targeted therapies are essential to mitigate treatment challenges and control the spread of these pathogens.
Keywords: Extensively drug-resistant bacteria, Gram-negative pathogens, Antibiotic resistance mechanisms, Molecular epidemiology, Novel antimicrobials
References
Afzal-Shah, M., Woodford, N., & Livermore, D. M. (2001). Characterization of OXA-25, OXA-26, and OXA-27, Molecular Class D β-Lactamases Associated with Carbapenem Resistance in Clinical Isolates of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 45(2), 583–588. https://doi.org/10.1128/aac.45.2.583-588.2001
Ansaldi, F., Canepa, P., Bassetti, M., Zancolli, M., Molinari, M., Talamini, A., Ginocchio, F., Durando, P., Mussap, M., Orengo, G., Viscoli, C., & Icardi, G. (2011). Sequential outbreaks of multidrug-resistant Acinetobacter baumannii in intensive care units of a tertiary referral hospital in Italy: combined molecular approach for epidemiological investigation. Journal of Hospital Infection, 79(2), 134–140. https://doi.org/10.1016/j.jhin.2011.05.027
Billard-Pomares, T., Clermont, O. P., Castellanos, M., Magdoud, F., Royer, G., Condamine, B., Fouteau, S., Barbe, V., Roche, D., Cruveiller, S., Médigue, C., Pognard, D., Glodt, J., Dion, S., Rigal, O., Picard, B., Denamur, E., & Branger, C. (2013). Antimicrobial agents and chemotherapy. Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/aac
Bodro, M., Sabé, N., Tubau, F., Lladó, L., Baliellas, C., González-Costello, J., Cruzado, J. M., & Carratalà, J. (2014). Extensively Drug-Resistant Pseudomonas aeruginosa Bacteremia in Solid Organ Transplant Recipients. Transplantation, 99(3), 616–622. https://doi.org/10.1097/tp.0000000000000366
Brigante, G., Migliavacca, R., Bramati, S., Motta, E., Nucleo, E., Manenti, M., Migliorino, G., Pagani, L., Luzzaro, F., & Viganò, F. E. (2012). Emergence and spread of a multidrug-resistant Acinetobacter baumannii clone producing both the carbapenemase OXA-23 and the 16S rRNA methylase ArmA. Journal of Medical Microbiology, 61(5), 653–661. https://doi.org/10.1099/jmm.0.040980-0
Cabot, G., Ocampo-Sosa, A. A., Domínguez, M. A., Gago, J. F., Juan, C., Tubau, F., Rodríguez, C., Moyà, B., Peña, C., Martínez-Martínez, L., & Oliver, A. (2012). Genetic Markers of Widespread Extensively Drug-Resistant Pseudomonas aeruginosa High-Risk Clones. Antimicrobial Agents and Chemotherapy, 56(12), 6349–6357. https://doi.org/10.1128/aac.01388-12
Catalano, M., Quelle, L., Jeric, P., Di Martino, A., & Maimone, S. (1999b). Survival of Acinetobacter baumannii on bed rails during an outbreak and during sporadic cases. Journal of Hospital Infection, 42(1), 27–35. https://doi.org/10.1053/jhin.1998.0535
Clancy, C. J., Chen, L., Hong, J. H., Cheng, S., Hao, B., Shields, R. K., Farrell, A. N., Doi, Y., Zhao, Y., Perlin, D. S., Kreiswirth, B. N., & Nguyen, M. H. (2013). Mutations of the ompK36 Porin Gene and Promoter Impact Responses of Sequence Type 258, KPC-2-Producing Klebsiella pneumoniae Strains to Doripenem and Doripenem-Colistin. Antimicrobial Agents and Chemotherapy, 57(11), 5258–5265. https://doi.org/10.1128/aac.01069-13
Correa, A., Del Campo, R., Perenguez, M., Blanco, V. M., Rodríguez-Baños, M., Perez, F., Maya, J. J., Rojas, L., Cantón, R., Arias, C. A., & Villegas, M. V. (2015). Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia. Antimicrobial Agents and Chemotherapy, 59(4), 2421–2425. https://doi.org/10.1128/aac.03926-14
Evans, H. L., Lefrak, S. N., Lyman, J., Smith, R. L., Chong, T. W., McElearney, S. T., Schulman, A. R., Hughes, M. G., Raymond, D. P., Pruett, T. L., & Sawyer, R. G. (2006). Cost of Gram-negative resistance*. Critical Care Medicine, 35(1), 89–95. https://doi.org/10.1097/01.ccm.0000251496.61520.75
Gasink, L. B., Edelstein, P. H., Lautenbach, E., Synnestvedt, M., & Fishman, N. O. (2009). Risk Factors and Clinical Impact of Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae. Infection Control and Hospital Epidemiology, 30(12), 1180–1185. https://doi.org/10.1086/648451
He´Ritier, C., Poirel, L., Aubert, D., & Nordmann, P. (2002). Genetic and Functional Analysis of the Chromosome-Encoded Carbapenem-Hydrolyzing Oxacillinase OXA-40 ofAcinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 47(1), 268–273. https://doi.org/10.1128/aac.47.1.268-273.2003
Hu, B., Ye, H., Xu, Y., Ni, Y., Hu, Y., Yu, Y., Huang, Z., & Ma, L. (2010). Clinical and economic outcomes associated with community-acquired intra-abdominal infections caused by extended spectrum beta-lactamase (ESBL) producing bacteria in China. Current Medical Research and Opinion, 26(6), 1443–1449. https://doi.org/10.1185/03007991003769068
Hu, B., Ye, H., Xu, Y., Ni, Y., Hu, Y., Yu, Y., Huang, Z., & Ma, L. (2010). Clinical and economic outcomes associated with community-acquired intra-abdominal infections caused by extended spectrum beta-lactamase (ESBL) producing bacteria in China. Current Medical Research and Opinion, 26(6), 1443–1449. https://doi.org/10.1185/03007991003769068
Hu, B., Ye, H., Xu, Y., Ni, Y., Hu, Y., Yu, Y., Huang, Z., & Ma, L. (2010b). Clinical and economic outcomes associated with community-acquired intra-abdominal infections caused by extended spectrum beta-lactamase (ESBL) producing bacteria in China. Current Medical Research and Opinion, 26(6), 1443–1449. https://doi.org/10.1185/03007991003769068
Kapmaz, M., Erdem, F., Abulaila, A., Yeniaras, E., Oncul, O., & Aktas, Z. (2016). First detection of NDM-1 with CTX-M-9, TEM, SHV and rmtC in Escherichia coli ST471 carrying IncI2, A/C and Y plasmids from clinical isolates in Turkey. Journal of Global Antimicrobial Resistance, 7, 152–153. https://doi.org/10.1016/j.jgar.2016.10.001
Lautenbach, E., Patel, J. B., Bilker, W. B., Edelstein, P. H., & Fishman, N. O. (2001). Extended-Spectrum -Lactamase-Producing Escherichia coli and Klebsiella pneumoniae: Risk Factors for Infection and Impact of Resistance on Outcomes. Clinical Infectious Diseases, 32(8), 1162–1171. https://doi.org/10.1086/319757
Moffatt, J. H., Harper, M., Harrison, P., Hale, J. D. F., Vinogradov, E., Seemann, T., Henry, R., Crane, B., St Michael, F., Cox, A. D., Adler, B., Nation, R. L., Li, J., & Boyce, J. D. (2010). Colistin Resistance in Acinetobacter baumannii Is Mediated by Complete Loss of Lipopolysaccharide Production. Antimicrobial Agents and Chemotherapy, 54(12), 4971–4977. https://doi.org/10.1128/aac.00834-10
Mulet, X., Cabot, G., Ocampo-Sosa, A. A., Domínguez, M. A., Zamorano, L., Juan, C., Tubau, F., Rodríguez, C., Moyà, B., Peña, C., Martínez-Martínez, L., & Oliver, A. (2013). Biological Markers of Pseudomonas aeruginosa Epidemic High-Risk Clones. Antimicrobial Agents and Chemotherapy, 57(11), 5527–5535. https://doi.org/10.1128/aac.01481-13
Patel, G., Huprikar, S., Factor, S. H., Jenkins, S. G., & Calfee, D. P. (2008). Outcomes of Carbapenem-Resistant Klebsiella pneumoniae Infection and the Impact of Antimicrobial and Adjunctive Therapies. Infection Control and Hospital Epidemiology, 29(12), 1099–1106. https://doi.org/10.1086/592412
Pouch, S., Kubin, C., Satlin, M., Tsapepas, D., Lee, J., Dube, G., & Pereira. (2015). Epidemiology and outcomes of carbapenem-resistant Klebsiella pneumoniae bacteriuria in kidney transplant recipients. Transplant Infectious Disease, 17(6), 800–809. https://doi.org/10.1111/tid.12450
Robledo, I. E., Aquino, E. E., Sante, M. I., Santana, J. L., Otero, D. M., Leo´N, C. F., & Va´Zquez, G. J. (2009). Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrobial Agents and Chemotherapy, 54(3), 1354–1357. https://doi.org/10.1128/aac.00899-09
Seward, R. J., & Towner, K. J. (1998). Molecular epidemiology of quinolone resistance in Acinetobacter spp. Clinical Microbiology and Infection, 4(5), 248–254. https://doi.org/10.1111/j.1469-0691.1998.tb00052.x
Tada, T., Miyoshi-Akiyama, T., Shimada, K., Shimojima, M., & Kirikae, T. (2014). Dissemination of 16S rRNA Methylase ArmA-Producing Acinetobacter baumannii and Emergence of OXA-72 Carbapenemase Coproducers in Japan. Antimicrobial Agents and Chemotherapy, 58(5), 2916–2920. https://doi.org/10.1128/aac.01212-13
Tanguy, M., Kouatchet, A., Tanguy, B., Pichard, É., Fanello, S., & Joly-Guillou, M. (2017). Management of an Acinetobacter baumannii outbreak in an intensive care unit. Médecine Et Maladies Infectieuses, 47(6), 409–414. https://doi.org/10.1016/j.medmal.2017.06.003
Thaden, J. T., Li, Y., Ruffin, F., Maskarinec, S. A., Hill-Rorie, J. M., Wanda, L. C., Reed, S. D., & Fowler, V. G. (2016). Increased Costs Associated with Bloodstream Infections Caused by Multidrug-Resistant Gram-Negative Bacteria Are Due Primarily to Patients with Hospital-Acquired Infections. Antimicrobial Agents and Chemotherapy, 61(3). https://doi.org/10.1128/aac.01709-16
Tumbarello, M., Viale, P., Viscoli, C., Trecarichi, E. M., Tumietto, F., Marchese, A., Spanu, T., Ambretti, S., Ginocchio, F., Cristini, F., Losito, A. R., Tedeschi, S., Cauda, R., & Bassetti, M. (2012b). Predictors of Mortality in Bloodstream Infections Caused by Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Importance of Combination Therapy. Clinical Infectious Diseases, 55(7), 943–950. https://doi.org/10.1093/cid/cis588
Turton, J. F., Woodford, N., Glover, J., Yarde, S., Kaufmann, M. E., & Pitt, T. L. (2006). Identification of Acinetobacter baumannii by Detection of the bla OXA-51-like Carbapenemase Gene Intrinsic to This Species. Journal of Clinical Microbiology, 44(8), 2974–2976. https://doi.org/10.1128/jcm.01021-06
Vila, J., Ruiz, J., Goni, P., & De Anta, T. J. (1997). Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 39(6), 757–762. https://doi.org/10.1093/jac/39.6.757
Weiner, L. M., Webb, A. K., Limbago, B., Dudeck, M. A., Patel, J., Kallen, A. J., Edwards, J. R., & Sievert, D. M. (2016). Antimicrobial-Resistant pathogens associated with Healthcare-Associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infection Control and Hospital Epidemiology, 37(11), 1288–1301. https://doi.org/10.1017/ice.2016.174