Information and engineering sciences | Online ISSN 3068-0115
REVIEWS   (Open Access)

Integrating AI and ML Techniques in Modern Microbiology

Rabi Sankar Mondal1*, Lamia Akter2, Md Nazmul Alam Bhuiyan1

+ Author Affiliations

Applied IT & Engineering 3 (1) 1-8 https://doi.org/10.25163/engineering.3110323

Submitted: 29 April 2025 Revised: 20 July 2025  Published: 22 July 2025 


Abstract

The integration of artificial intelligence (AI) and machine learning (ML) into the field of microbiology is making a significant impact on both research and clinical practices. These technologies are helping us better understand microbial systems, improve diagnostic accuracy, speed up drug discovery, and tailor treatments to individual patients. Some exciting applications of AI in microbiology include helping with genome sequencing, predicting antimicrobial resistance, developing vaccines, and analyzing microbiomes. In industrial settings, AI is transforming quality control and safety in the pharmaceutical, food, and cosmetic industries. However, despite these advancements, there are still challenges that prevent us from fully realizing the potential of AI and ML in microbiology. Issues such as inconsistent data quality, the complexity of algorithms that can be difficult to interpret, a lack of regulatory guidelines, and ethical concerns surrounding data privacy and algorithm bias must be addressed. There is a pressing need for collaboration across various fields, transparent development of models, and cooperation among academic institutions and healthcare providers globally. Looking to the future, we can expect innovations in deep learning, hybrid modeling techniques, and the development of international standards and policies to drive further advancements. With responsible implementation and ongoing research, AI and ML are set to become essential tools in microbiology, offering innovative solutions to persistent challenges in healthcare, diagnostics, and environmental monitoring. This review focuses on the current uses, challenges, and future directions of AI in microbiology, highlighting the importance of ethical considerations, collaboration, and data-driven strategies to achieve meaningful and sustainable outcomes.

Keywords: Artificial intelligence, machine learning, microbiology, antimicrobial resistance, personalized medicine

References

Ali, O., Farooq, A., Yang, M., Jin, V. X., Bjørås, M., Wang, J. (2022). abc4pwm: Affinity-based clustering for position weight matrices in applications of DNA sequence analysis. BMC Bioinf. 23, 83. doi: 10.1186/s12859-022-04615-z

Alqaissi, E., Alotaibi, F., Sher Ramzan, M., Algarni, A. (2023). Novel graph-based machine-learning technique for viral infectious diseases: application to influenza and hepatitis diseases. Ann. Med.. 55, 2304108. doi: 10.1080/07853890.2024.2304108

Altman, N., Krzywinski, M. (2017). Clustering. Nat. Methods. 14, 545–546.

Bao, Y., Medland, N. A., Fairley, C. K., Wu, J., Shang, X., Chow, E. P. F., et al. (2021). Predicting the diagnosis of HIV and sexually transmitted infections among men who have sex with men using machine learning approaches. J. Infect. 82, 48–59. doi: 10.1016/j.jinf.2020.11.007

Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I. W. H., Ng, L. G., et al. (2018). Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44. doi: 10.1038/nbt.4314

Benincà, E., Pinto, S., Cazelles, B., Fuentes, S., Shetty, S., Bogaards, J. A., et al. (2023). Wavelet clustering analysis as a tool for characterizing community structure in the human microbiome. Sci. Rep. 13, 8042. doi: 10.1038/s41598-023-34713-8

Bergmeir, C., Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. Inf. Sci. 191, 192–213. Doi: 10.1016/j.ins.2011.12.028

Cammarota, G., Ianiro, G., Ahern, A., Carbone, C., Temko, A., Claesson, M. J., et al. (2020). Gut microbiome, big data, and machine learning to promote precision medicine for cancer. Nat. Rev. Gastroenterol. Hepatol. 17, 635–648. doi: 10.1038/s41575-020-0327-3

Campbell, T. W., Wilson, M. P., Roder, H., MaWhinney, S., Georgantas, R. W., 3rd, Maguire, L. K., et al. (2021). Predicting prognosis in COVID-19 patients using machine learning and readily available clinical data. Int. J. Med. Inform. 155, 104594.

Cao, J., Xiao, Y., Zhang, M., Huang, L., Wang, Y., Liu, W., et al. (2023). Deep learning of dual plasma fingerprints for high-performance infection classification. Small 19, e2206349. doi: 10.1002/smll.202206349

Chadaga, K., Chakraborty, C., Prabhu, S., Umakanth, S., Bhat, V., Sampathila, N. (2022). Clinical and laboratory approach to diagnose COVID-19 using machine learning. Interdiscip Sci. 14, 452–470. doi: 10.1007/s12539-021-00499-4

Chen, X., Ren, B., Chen, M., Wang, Q., Zhang, L., Yan, G. (2016). NLLSS: Predicting synergistic drug combinations based on semi-supervised learning. PloS Comput. Biol. 12, e1004975. Doi: 10.1371/journal.pcbi.1004975

David, J. A., Zhichao, A., Mark, A., Chris, A., Allcock, A., Brian, A., et al. (2022). A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell 185, 916–938.e58.

Dawkins, J. J., Allegretti, J. R., Gibson, T. E., McClure, E., Delaney, M., Bry, L., et al. (2022). Gut metabolites predict Clostridioides difficile recurrence. Microbiome 10, 87. doi: 10.1186/s40168-022-01284-1

De Fátima Cobre, A., Surek, M., Stremel, D. P., Fachi, M. M., Lobo Borba, H. H., Tonin, F. S., et al. (2022). Diagnosis and prognosis of COVID-19 employing analysis of patients’ plasma and serum via LC-MS and machine learning. Comput. Biol. Med.. 146, 105659.

Delafiori, J., Navarro, L. C., Siciliano, R. F., de Melo, G. C., Busanello, E. N. B., Nicolau, J. C., et al. (2021). COVID-19 automated diagnosis and risk assessment through metabolomics and machine learning. Anal. Chem. 93, 2471–2479. doi: 10.1021/acs.analchem.0c04497

Deo, R. C. (2015). Machine learning in medicine. Circulation 132, 1920–1930. doi: 10.1161/CIRCULATIONAHA.115.001593

Essalat, M., Abolhosseini, M., Le, T. H., Moshtaghion, S. M., Kanavi, M. R. (2023). Interpretable deep learning for diagnosis of fungal and acanthamoeba keratitis. Vivo confocal microscopy images Sci. Rep. 13, 8953.

Fabian, P., Gaël, V., Alexandre, G., Vincent, M., Bertrand, T., Olivier, G., et al. (2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Feng, T., Noren, D. P., Kulkarni, C., Mariani, S., Zhao, C., Ghosh, E., et al. (2023). Machine learning-based clinical decision support for infection risk prediction. Front. Med. 10.

Fu, C., Zhang, X., Veri, A. O., Iyer, K. R., Lash, E., Xue, A., et al. (2021). Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets. Nat. Commun. 12 (1), 6497.

Gao, A., Kouznetsova, V. L., Tsigelny, I. F. (2022). Machine-learning-based virtual screening to repurpose drugs for the treatment of Candida albicans infection. Mycoses 65, 794–805. doi: 10.1111/myc.13475

Ghosh, S., Sarkar Paria, D., Chatterjee, S. (2022). Comparative study on bacterial population dynamics of foregut, midgut, and hindgut content of Perionyx excavatus (Perrier) isolated from eco-friendly, non-hazardous vermicompost. Appl. Biochem. Biotechnol. 194, 6126–6139. doi: 10.1007/s12010-022-03970-0

Goodswen, S. J., Barratt, J. L. N., Kennedy, P. J., Kaufer, A., Calarco, L., Ellis, J. T. (2021). Machine learning and applications in microbiology. FEMS Microbiol. Rev. 45, fuab015. doi: 10.1093/femsre/fuab015

Habgood-Coote, D., Wilson, C., Shimizu, C., Barendregt, A. M., Philipsen, R., Galassini, R., et al. (2023). Diagnosis of Childhood Febrile Illness Using a Multiclass Blood RNA Molecular Signature. Med 4, 635–654.e5. doi: 10.1016/j.medj.2023.06.007

He, X., Qian, K., Wang, Z., Zeng, S., Li, H., Li, W. V. (2023). scAce: an adaptive embedding and clustering method for single-cell gene expression data. Bioinf. 39 btad546. doi: 10.1093/bioinformatics/btad546

Jolliffe, I. T., Cadima, J. (2016). Principal component analysis: a review and recent developments. Philos. Trans. A Math Phys. Eng. Sci. 374, 20150202. doi: 10.1098/rsta.2015.0202

Kaufman, S., Rosset, S., Perlich, C., Stitelman, O. (2012). Leakage in data mining: Formulation, detection, and avoidance. ACM Trans. Knowl. Discovery Data 6, 1–21. doi: 10.1145/2382577.2382579

Kaul, V., Enslin, S., Gross, S. A. (2020). History of artificial intelligence in medicine. Gastrointest Endosc 92, 807–812. doi: 10.1016/j.gie.2020.06.040

Shan, W., Li, X., Yao, H., Lin, K. (2021). Convolutional neural network-based virtual screening. Curr. Med. Chem. 28, 2033–2047. doi: 10.2174/0929867327666200526142958

Siddique, M. A. B., Debnath, A., Nath, N. D., Biswash, M. A. R., Tufael (2018). "Advancing Medical Science through Nanobiotechnology: Prospects, Applications, and Future Directions", Journal of Primeasia, 1.1(1),1-7,10163

Tang, Y., Wang, S., Qu, Y., Cui, Z., Zhang, W. (2023). Consistency and adversarial semi-supervised learning for medical image segmentation. Comput. Biol. Med. 161, 107018. doi: 10.1016/j.compbiomed.2023.107018

Topçuoglu, B. D., Lesniak, N. A., Ruffin, M. T., Wiens, J., Schloss, P. D. (2020). A framework for effective application of machine learning to microbiome-based classification problems. mBio 11, e00434–e00420. doi: 10.1128/mBio.00434-20

Tsuyuzaki, K., Sato, H., Sato, K., Nikaido, I. (2020). Benchmarking principal component analysis for large-scale single-cell RNA-sequencing. Genome Biol. 21 (1), 9.

Tufael & Atikur Rahman Sunnay (2022). Transforming Healthcare with Artificial Intelligence: Innovations, Applications, and Future Challenges, Journal of Primeasia, 3(1), 1–6, 9802

Tufael, Atiqur Rahman Sunny et al. (2023). Artificial Intelligence in Addressing Cost, Efficiency, and Access Challenges in Healthcare, 4(1), 1-5, 9798

Yang, Y., Xu, B., Murray, J., Haverstick, J., Chen, X., Tripp, R. A., et al. (2022). Rapid and quantitative detection of respiratory viruses using surface-enhanced Raman spectroscopy and machine learning. Biosens Bioelectron 217, 114721. doi: 10.1016/j.bios.2022.114721


View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
13
View
0
Share