Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Machine Learning-Based Enhanced Drug Delivery System and Its Applications – A Systematic Review

Abhijeet  Madhukar Haval 1*, Kumar Shwetabh 1, Sushree Sasmita Dash 1

+ Author Affiliations

Journal of Angiotherapy 8(1) 1-9 https://doi.org/10.25163/angiotherapy.819480

Submitted: 13 November 2023  Revised: 19 January 2024  Published: 22 January 2024 

Abstract

Machine Learning (ML) methods offer advanced algorithms and tools to enhance drug development. Quantitative Structure-Activity Relationship (QSAR) approaches have successfully predicted several physicochemical aspects of pharmaceuticals, including toxicity, intake, drug-drug interactions, carcinogenesis, and dispersion.  ML, a branch of artificial intelligence, has demonstrated significant promise in drug development. The methods presented in this study can model non-linear databases and handle big data that is becoming more extensive and intricate. Diverse ML methodologies are currently employed for making forecasts of drug targets, modeling the framework of drug targets, forecasting binding sites, conducting ligand-based similarity searches, designing novel ligands with specific properties, creating scoring algorithms for molecular docking, constructing QSAR models for predicting biological reactions, and forecasting the pharmacokinetic and pharmacodynamic characteristics of ligands. The findings of this study illustrate the widespread utilization of ML techniques in drug discovery, suggesting a favorable outlook for these advances. These findings have the potential to facilitate further exploration of ML in connection with drug discovery and growth by researchers, learners, and pharmaceutical companies.

Keywords: Drug Delivery, Pharmaceutical Industry, Machine Learning, Applications

References

Bannigan, P., Aldeghi, M., Bao, Z., Häse, F., Aspuru-Guzik, A., & Allen, C. (2021). Machine learning directed drug formulation development. Advanced Drug Delivery Reviews, 175, 113806.

https://doi.org/10.1016/j.addr.2021.05.016

 

Bao, Z., Bufton, J., Hickman, R. J., Aspuru-Guzik, A., Bannigan, P., & Allen, C. (2023). Revolutionizing drug formulation development: The increasing impact of machine learning. Advanced Drug Delivery Reviews, 115108.

https://doi.org/10.1016/j.addr.2023.115108

 

Bavumiragira, J.P., Yin, H. (2022). Fate and transport of pharmaceuticals in water systems: A processes review. Sci. Total Environ. 823, 153635.

https://doi.org/10.1016/j.scitotenv.2022.153635

 

Bertolini, M., Mezzogori, D., Neroni, M., Zammori, F. (2021). Machine Learning for industrial applications: A comprehensive literature review. Expert Syst. Appl. 175, 114820.

https://doi.org/10.1016/j.eswa.2021.114820

 

Bochicchio, S., Lamberti, G., Barba, A.A. (2021). Polymer-lipid pharmaceutical nanocarriers: innovations by new formulations and production technologies. Pharm. 13(2), 198.

https://doi.org/10.3390/pharmaceutics13020198

 

Boso, D. P., Di Mascolo, D., Santagiuliana, R., Decuzzi, P., & Schrefler, B. A. (2020). Drug delivery: Experiments, mathematical modelling and machine learning. Computers in biology and medicine, 123, 103820.

https://doi.org/10.1016/j.compbiomed.2020.103820

 

Caban, M., Stepnowski, P. (2021). How to decrease pharmaceuticals in the environment? A review. Environ. Chem. Lett. 19, 3115-3138.

https://doi.org/10.1007/s10311-021-01194-y

 

Calmet, H., Dosimont, D., Oks, D., Houzeaux, G., Almirall, B.V., Inthavong, K. (2023). Machine learning and sensitivity analysis for predicting nasal drug delivery for targeted deposition. Int. J. Pharm. 123098.

https://doi.org/10.1016/j.ijpharm.2023.123098

 

Carpenter, K. A., & Huang, X. (2018). Machine learning-based virtual screening and its applications to Alzheimer's drug discovery: a review. Current pharmaceutical design, 24(28), 3347-3358.

https://doi.org/10.2174/1381612824666180607124038

 

Chang, V., Bailey, J., Xu, Q.A., Sun, Z. (2023). Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms. Neural. Comput. Appl. 35(22), 16157-16173.

https://doi.org/10.1007/s00521-022-07049-z

 

Dagenais, S., Russo, L., Madsen, A., Webster, J., Becnel, L. (2022). Use of real-world evidence to drive drug development strategy and inform clinical trial design. Clin. Pharmacol. Ther. 111(1), 77-89.

https://doi.org/10.1002/cpt.2480

 

de Oliveira, J.V.R., Silveira, P.L., Spingolon, G., Alves, G.A.L., Peña, F.P., Aguirre, T.A.S. (2023). Polymeric nanoparticles containing babassu oil: A proposed drug delivery system for controlled release of hydrophilic compounds. Chem. Phys. Lipids. 253, 105304.

https://doi.org/10.1016/j.chemphyslip.2023.105304

 

Diniz, F., Coelho, P., Duarte, H.O., Sarmento, B., Reis, C.A., Gomes, J. (2022). Glycans as targets for drug delivery in cancer. Cancers. 14(4), 911.

https://doi.org/10.3390/cancers14040911

 

Harrison, P.J., Wieslander, H., Sabirsh, A., Karlsson, J., Malmsjö, V., Hellander, A., Spjuth, O. (2021). Deep-learning models for lipid nanoparticle-based drug delivery. Nanomed. 16(13), 1097-1110.

https://doi.org/10.2217/nnm-2020-0461

 

He, S., Leanse, L.G., Feng, Y. (2021). Artificial intelligence and machine learning assisted drug delivery for effectively treating infectious diseases. Adv. Drug Deliv. Rev. 178, 113922.

https://doi.org/10.1016/j.addr.2021.113922

 

Kibria, M. R., Akbar, R. I., Nidadavolu, P., Havryliuk, O., Lafond, S., & Azimi, S. (2023). Predicting efficacy of drug-carrier nanoparticle designs for cancer treatment: a machine learning-based solution. Scientific Reports, 13(1), 547.

https://doi.org/10.1038/s41598-023-27729-7

 

Ma, M., Huang, S., Liu, S., Lv, X., Zhu, J., Liu, K., Xiong, F. (2023). A novel approach of modeling pharmacokinetics and pharmacokinetics-pharmacodynamics for the intravenous nano drug delivery system. J Drug Deliv Sci Technol. 89, 105071.

https://doi.org/10.1016/j.jddst.2023.105071

 

Mazarura, K.R., Kumar, P., Choonara, Y.E. (2022). Customized 3D printed multi-drug systems: an effective and efficient approach to polypharmacy. Expert Opin Drug Deliv. 19(9), 1149-1163.

https://doi.org/10.1080/17425247.2022.2121816

 

Mozafari, N., Mozafari, N., Dehshahri, A., & Azadi, A. (2023). Knowledge gaps in generating cell-based drug delivery systems and a possible meeting with artificial intelligence. Molecular Pharmaceutics, 20(8), 3757-3778.

https://doi.org/10.1021/acs.molpharmaceut.3c00162

 

Palugan, L., Cerea, M., Cirilli, M., Moutaharrik, S., Maroni, A., Zema, L., Gazzaniga, A. (2021). Intravesical drug delivery approaches for improved therapy of urinary bladder diseases. Int. J. Pharm. X, 3, 100100.

https://doi.org/10.1016/j.ijpx.2021.100100

 

Rai, R., Tiwari, M.K., Ivanov, D., Dolgui, A. (2021). Machine learning in manufacturing and industry 4.0 applications. Int. J. Prod. Res. 59(16), 4773-4778.

https://doi.org/10.1080/00207543.2021.1956675

 

Sharma, S., Masud, M.K., Kaneti, Y.V., Rewatkar, P., Koradia, A., Hossain, M.S.A., Salomon, C. (2021). Extracellular vesicle nanoarchitectonics for novel drug delivery applications. Small. 17(42), 2102220.

https://doi.org/10.1002/smll.202102220

 

Sheng, Y., Gao, J., Yin, Z.Z., Kang, J., Kong, Y. (2021). Dual-drug delivery system based on alginate and sodium carboxymethyl cellulose hydrogels for colorectal cancer treatment. Carbohydr. Polym. 269, 118325.

https://doi.org/10.1016/j.carbpol.2021.118325

 

Xu, J., Wang, X., Liu, F. (2021). Government subsidies, R&D investment and innovation performance: analysis from pharmaceutical sector in China. Technol Anal Strateg Manag. 33(5), 535-553.

https://doi.org/10.1080/09537325.2020.1830055

 

Zhang, J.Z., Srivastava, P.R., Sharma, D., Eachempati, P. (2021). Big data analytics and machine learning: A retrospective overview and bibliometric analysis. Expert Syst. Appl. 184, 115561.

https://doi.org/10.1016/j.eswa.2021.115561

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



16
Save
0
Citation
461
View
0
Share