EMAN RESEARCH PUBLISHING | <p>Characterization of Essential Oil Composition of <em>Syzygium aromaticum Linn. </em>(Clove) by GC-MS and Evaluation of its Antioxidant Activity</p>
Inflammation Cancer Angiogenesis Biology and Therapeutics | Impact 0.1 (CiteScore) | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Characterization of Essential Oil Composition of Syzygium aromaticum Linn. (Clove) by GC-MS and Evaluation of its Antioxidant Activity

Javed Ahamad 1*

+ Author Affiliations

Journal of Angiotherapy 7(1) 1-5 https://doi.org/10.25163/angiotherapy.719358

Submitted: 15 October 2023  Revised: 26 November 2023  Published: 27 November 2023 

Abstract

Background: Syzygium aromaticum Linn. (Clove, Family: Myrtaceae) is traditionally used as a spice and condiment; and medicinally used as a dental analgesic, carminative, and antiseptic. The Clove buds are widely used as a spice in Kurdish foods and are abundantly available in the local market; the quality of Clove available in the local market of Erbil has not been studied till now. Therefore, the aim of current research is to characterize essential oil composition by gas-chromatography mass spectroscopy (GC-MS) and evaluate its antioxidant potential by the DPPH method. Results: The GC-MS analysis of Clove essential oil resulted identification of 37 chemical compounds which constitute about 99.49% of total essential oil. Clove essential oil was found rich in eugenol (59.87%), caryophyllene (23.58%), α-selinene (4.67%), α-terpinyl acetate (4.12%), and humulene (3.74%). The Clove essential oil was found potent antioxidant with a maximum inhibition of 90.94% and it was found comparable with standard antioxidant compounds such as ascorbic acid (92.94%), and gallic acid (87.80%) inhibition. Conclusion: The present study explores the essential oil composition of Clove found in the Kurdistan region and results also show its essential oil has potent antioxidant activity.

Keywords:  Syzygium aromaticum, Clove, Myrtaceae, Kurdistan, GC-MS, DPPH, Antioxidant.

References

Ahamad, J., Alkefai, N.H.A., Amin, S., Mir, S.R. (2020b). Standardized extract from Enicostemma littorale ameliorates post-prandial hyperglycaemia in normal and diabetic rats. J. Biol. Active Prod. Nat., 10(1): 34-43.

Ahamad, J., Hasan, N., Amin, S., Mir, S.R. (2016). Swertiamarin contributes to glucose homeostasis via inhibition of carbohydrate metabolizing enzymes. J. Natural Remedies, 16(4), 125-130.

Ahamad, J., Kaskoos, R.A., Amin, S., Mir, S.R (2020c). Quantitative Analysis of Gymnemagenin in Gymnema sylvestre Leaves and in Herbal Formulation by a Validated HPTLC Method. J Biolog Active Prod Nat., 10:3, 211-219,

Ahamad, J., Naquvi, K.J., Amin, S., Mir, S.R. (2021). Gymnemic Acid-Rich Fraction from Gymnema sylvestre Leaves Ameliorates Post Prandial Hyperglycaemia in In-Vitro and In-Vivo Studies. J Biolog Active Prod Nat., 11(1), 32-41.

Ahamad, J., Naquvi, K.J., Mir, S.R., Ali, M., Shuaib, M. (2011). Review on role of natural alpha-glucosidase inhibitors for management of diabetes mellitus. Int. J. Biomed. Res., 6, 374-380.

Ahamad, J., Toufeeq, I., Khan, M. A., Ameen, M.S.M., Anwer, E.T., Uthirapathy, S., et al., (2019a). Oleuropein: A Natural Antioxidant Molecule in the Treatment of Metabolic Syndrome. Phytother. Res., 33(12), 3112-3128.

Ahamad, J., Uthirapathy, S., Ameen, M.S.M., Anwer, E.T. (2019b). Essential oil composition and antidiabetic, anticancer activity of Rosmarinus officinalis L. leaves from Erbil (Iraq). J. Essent. Oil Bear. Pl., 22(6), 1544-1553.

Ahamad, J., Uthirapathy, S., Ameen, M.S.M., Anwer, E.T., Mir, S.R. (2020a). Chemical composition and in-vitro antidiabetic effects of Olea europaea Linn. (Olive). Curr. Bioactive Comp., 16(8), 1157-1163.

Alkefai, N.H., Ahamad, J., Amin, S., Mir, S.R. (2018). Arylated gymnemic acids from Gymnema sylvestre R.Br. as potential α-glucosidase inhibitors. Phytochem Lett., 25: 196-202.

Alkefai, N.H., Sharma, M., Ahamad, J., Amin, S., Mir, S.R. (2019). New olean-15-ene type gymnemic acids from Gymnema sylvestre (Retz.) R.Br. and their antihyperglycemic activity through α-glucosidase inhibition. Phytochem. Lett., 32: 83-89.

Fabricant, D.S., and Farnsworth, N.R. (2001). The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 109(1), 69-75.

Flores-Bocanegra, L., Gonzalez-Andrade, M., Bye, R., Linares, E., Mata, R. (2017). New α-Glucosidase inhibitors from Salvia circinata. J. Nat. Prod., 80, 1584-1593.

Fushiki, T., Kojima, A., Imoto, T., Inoue, K., Sugimoto, E. (1992). Extract of Gymnema sylvestre leaves and purified gymnemic acid inhibits glucose-stimulated gastric inhibitory peptide secretion in rats. J. Nutr., 122, 2367-2373.

Ghani, U. (2015). Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. Eur. J. Med. Chem., 103, 133-162.

IDF Diabetes Atlas, 8th ed.; International Diabetes Federation. Available at http://www.diabetesatlas.org. Accessed June 27, (2023).

Javed Ahamad. (2023). Characterization of Essential Oil Composition of Syzygium aromaticum Linn. (Clove) by GC-MS and Evaluation of its Antioxidant Activity, Journal of Angiotherapy, 7(1), 1-5, 9358.

Kirtikar, K., Basu, B. (1998). Indian Medicinal Plants, International Book Distributors, Deharadun, India. Vol III, Pp. 1625.

Masayuki, Y., Toshiyuki, M., Masashi, K., Yuhao, L., Nubotoshi, M., Johji, Y., Hisash, M. (1997). Medicinal Foodstuffs (IX1) The inhibitors of glucose absorption from the leaves of Gymnema sylvestre R.Br. (Asclepiadaceae): structures of gymnemosides A and B. Chem. Pharm. Bull., 45(10), 1671-1676.

Nadkarni, K.M. (2007). Indian Materia Medica, Popular Prakashan, Bombay, India. Vol. I, p. 596-99.

Purves, R.D. (1992). Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the moment-curve (AUMC). J. Pharmacokinet Biopharm., 20, 211-227.

Scheen, A.J. (2003). Is there a role for α-glucosidase inhibitors in the prevention of type 2 diabetes mellitus? Drugs, 63, 933-951.

Subramanian, R., Asmawi, M.Z., Sadikun, A. (2008). In-vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim. Pol., 55(2), 391-398.

Sugihara, Y., Nojima, H., Matsuda, H., Murakami, T., Yoshikawa, M., Kimura, I. (2000). Antihyperglycemic effects of gymnemic acid IV, a compound derived from Gymnema sylvestre leaves in streptozotocin-diabetic mice. J. Asian Nat. Prod. Res., 2(4), 321-327.

Wen-Cai, Y., Zhang, Q.W., Liu, X., Che, C.T., Zhao, S.X. (2000). Oleanane saponins from Gymnema sylvestre. Phytochem., 53, 893-899.

Committee on Publication Ethics

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



5
Save
0
Citation
244
View
0
Share