Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X

Stromal Interaction Molecule-1 (STIM1): Orchestrating Calcium Signaling in Cancer and Hematologic Malignancies

Rabiatul Basria S. M. N. Mydin1, Adam Azlan1, Eman Salem Saeed Algariri,1 Nur Azuar Abdul Rahim2,3, Emmanuel Jairaj Moses1, Narazah Mohd Yusoff1

+ Author Affiliations

Journal of Angiotherapy 7(1) 1-5 https://doi.org/10.25163/angiotherapy.719353

Submitted: 28 September 2023  Revised: 08 November 2023  Published: 12 November 2023 

Abstract

STIM-1 plays pivotal roles in carcinogenesis via calcium signalling. STIM-1 regulatory functions in malignancies were observed to be significantly implicated resulting in various oncogenic properties. STIM-1 induced oncogenic properties mainly via the store operated calcium entry (SOCE) disruption. Moreover, calcium signalling mediated via STIM-1 could also in synergy with reactive oxygen species (ROS) mediates oncogenic characteristics. This would often lead to induction of pro-survival mechanism in cancer. Understanding STIM-1 lanscape is therefore crucial in contributing to the knowledge on cancer alleviation. This review emphasized on the significance of STIM1 in various cancers including hematologic malignancies and its intricate influence over ROS and various cellular processes.

Keywords: Cancer, Disease, Stromal Interaction Molecule 1 (STIM1), Store-Operated Calcium Entry (SOCE), Calcium Signalling, Hematological Malignancies

References

Cabanas, H., Harnois, T., Magaud, C., Cousin, L., Constantin, B., Bourmeyster, N., & Déliot, N. (2018). Deregulation of calcium homeostasis in Bcr-Abl-dependent chronic myeloid leukemia. Oncotarget, 9(41), 26309–26327. https://doi.org/10.18632/oncotarget.25241

Cheng, H., Wang, S., & Feng, R. (2016). STIM1 plays an important role in TGF-β-induced suppression of breast cancer cell proliferation. Oncotarget, 7(13), 16866–16878. https://doi.org/10.18632/oncotarget.7619

Cheng, Y., Hao, Y., Zhang, A., Hu, C., Jiang, X., Wu, Q., & Xu, X. (2018). Persistent STAT5-mediated ROS production and involvement of aberrant p53 apoptotic signaling in the resistance of chronic myeloid leukemia to imatinib. International Journal of Molecular Medicine, 41(1), 455–463. https://doi.org/10.3892/ijmm.2017.3205

Cui, C., Merritt, R., Fu, L., & Pan, Z. (2017). Targeting calcium signaling in cancer therapy. Acta Pharmaceutica Sinica. B, 7(1), 3–17. https://doi.org/10.1016/j.apsb.2016.11.001

Dejos, C., Gkika, D., & Cantelmo, A. R. (2020). The Two-Way Relationship Between Calcium and Metabolism in Cancer. Frontiers in Cell and Developmental Biology, 8, 573747. https://doi.org/10.3389/fcell.2020.573747

Diez-Bello, R., Jardin, I., Salido, G. M., & Rosado, J. A. (2017). Orai1 and Orai2 mediate store-operated calcium entry that regulates HL60 cell migration and FAK phosphorylation. Biochimica Et Biophysica Acta. Molecular Cell Research, 1864(6), 1064–1070. https://doi.org/10.1016/j.bbamcr.2016.11.014

Feldman, B., Fedida-Metula, S., Nita, J., Sekler, I., & Fishman, D. (2010). Coupling of mitochondria to store-operated Ca(2+)-signaling sustains constitutive activation of protein kinase B/Akt and augments survival of malignant melanoma cells. Cell Calcium, 47(6), 525–537. https://doi.org/10.1016/j.ceca.2010.05.002

Feno, S., Butera, G., Vecellio Reane, D., Rizzuto, R., & Raffaello, A. (2019). Crosstalk between Calcium and ROS in Pathophysiological Conditions. Oxidative Medicine and Cellular Longevity, 2019, 9324018. https://doi.org/10.1155/2019/9324018

Ge, C., Zeng, B., Li, R., Li, Z., Fu, Q., Wang, W., Wang, Z., Dong, S., Lai, Z., Wang, Y., Xue, Y., Guo, J., Di, T., & Song, X. (2019). Knockdown of STIM1 expression inhibits non-small-cell lung cancer cell proliferation in vitro and in nude mouse xenografts. Bioengineered, 10(1), 425–436. https://doi.org/10.1080/21655979.2019.1669518

Görlach, A., Bertram, K., Hudecova, S., & Krizanova, O. (2015). Calcium and ROS: A mutual interplay. Redox Biology, 6, 260–271. https://doi.org/10.1016/j.redox.2015.08.010

Gross, S., Mallu, P., Joshi, H., Schultz, B., Go, C., & Soboloff, J. (2020). Ca2+ as a therapeutic target in cancer. Advances in Cancer Research, 148, 233–317. https://doi.org/10.1016/bs.acr.2020.05.003

Hempel, N., & Trebak, M. (2017). Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium, 63, 70–96. https://doi.org/10.1016/j.ceca.2017.01.007

Herbst, R. S., Morgensztern, D., & Boshoff, C. (2018). The biology and management of non-small cell lung cancer. Nature, 553(7689), 446–454.

Jardin, I., & Rosado, J. A. (2016). STIM and calcium channel complexes in cancer. Biochimica Et Biophysica Acta, 1863(6 Pt B), 1418–1426. https://doi.org/10.1016/j.bbamcr.2015.10.003

Kim, J.-H., Lkhagvadorj, S., Lee, M.-R., Hwang, K.-H., Chung, H. C., Jung, J. H., Cha, S.-K., & Eom, M. (2014). Orai1 and STIM1 are critical for cell migration and proliferation of clear cell renal cell carcinoma. Biochemical and Biophysical Research Communications, 448(1), 76–82. https://doi.org/10.1016/j.bbrc.2014.04.064

Kondratska, K., Kondratskyi, A., Yassine, M., Lemonnier, L., Lepage, G., Morabito, A., Skryma, R., & Prevarskaya, N. (2014). Orai1 and STIM1 mediate SOCE and contribute to apoptotic resistance of pancreatic adenocarcinoma. Biochimica Et Biophysica Acta, 1843(10), 2263–2269. https://doi.org/10.1016/j.bbamcr.2014.02.012

Latour, S., Mahouche, I., Cherrier, F., Merlio, J.-P., Poglio, S., & Bepoldin, L. B. (2017). Abstract 1881: STIM1 and Orai1 control non-Hodgkin lymphoma cells migration. Cancer Research, 77(13_Supplement), 1881. https://doi.org/10.1158/1538-7445.AM2017-1881

Li, G., Zhang, Z., Wang, R., Ma, W., Yang, Y., Wei, J., & Wei, Y. (2013). Suppression of STIM1 inhibits human glioblastoma cell proliferation and induces G0/G1 phase arrest. Journal of Experimental & Clinical Cancer Research?: CR, 32(1), 20. https://doi.org/10.1186/1756-9966-32-20

Li, W., Zhang, M., Xu, L., Lin, D., Cai, S., & Zou, F. (2013). The apoptosis of non-small cell lung cancer induced by cisplatin through modulation of STIM1. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 65(7–8), 1073–1081. https://doi.org/10.1016/j.etp.2013.04.003

Li, X., Fang, P., Mai, J., Choi, E. T., Wang, H., & Yang, X. (2013). Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. Journal of Hematology & Oncology, 6, 19. https://doi.org/10.1186/1756-8722-6-19

Liu, Y., Jin, M., Wang, Y., Zhu, J., Tan, R., Zhao, J., Ji, X., Jin, C., Jia, Y., Ren, T., & Xing, J. (2020). MCU-induced mitochondrial calcium uptake promotes mitochondrial biogenesis and colorectal cancer growth. Signal Transduction and Targeted Therapy, 5(1), 59. https://doi.org/10.1038/s41392-020-0155-5

Lunz, V., Romanin, C., & Frischauf, I. (2019). STIM1 activation of Orai1. Cell Calcium, 77, 29–38. https://doi.org/10.1016/j.ceca.2018.11.009

Muik, M., Schindl, R., Fahrner, M., & Romanin, C. (2012). Ca(2+) release-activated Ca(2+) (CRAC) current, structure, and function. Cellular and Molecular Life Sciences: CMLS, 69(24), 4163–4176. https://doi.org/10.1007/s00018-012-1072-8

Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G., & Migliaccio, A. (2020). ROS in cancer therapy: The bright side of the moon. Experimental & Molecular Medicine, 52(2), 192–203. https://doi.org/10.1038/s12276-020-0384-2

Prakriya, M. (2020). Calcium and cell function. The Journal of Physiology, 598(9), 1647–1648. https://doi.org/10.1113/JP279541

Rosado, J. A., Diez, R., Smani, T., & Jardín, I. (2015). STIM and Orai1 Variants in Store-Operated Calcium Entry. Frontiers in Pharmacology, 6, 325. https://doi.org/10.3389/fphar.2015.00325

Saint Fleur-Lominy, S., Maus, M., Vaeth, M., Lange, I., Zee, I., Suh, D., Liu, C., Wu, X., Tikhonova, A., Aifantis, I., & Feske, S. (2018). STIM1 and STIM2 Mediate Cancer-Induced Inflammation in T Cell Acute Lymphoblastic Leukemia. Cell Reports, 24(11), 3045-3060.e5. https://doi.org/10.1016/j.celrep.2018.08.030

Singh, A. K., Roy, N. K., Bordoloi, D., Padmavathi, G., Banik, K., Khwairakpam, A. D., Kunnumakkara, A. B., & Sukumar, P. (2020). Orai-1 and Orai-2 regulate oral cancer cell migration and colonisation by suppressing Akt/mTOR/NF-κB signalling. Life Sciences, 261, 118372.

Takahashi, N., Chen, H.-Y., Harris, I. S., Stover, D. G., Selfors, L. M., Bronson, R. T., Deraedt, T., Cichowski, K., Welm, A. L., Mori, Y., Mills, G. B., & Brugge, J. S. (2018). Cancer Cells Co-opt the Neuronal Redox-Sensing Channel TRPA1 to Promote Oxidative-Stress Tolerance. Cancer Cell, 33(6), 985-1003.e7. https://doi.org/10.1016/j.ccell.2018.05.001

Tilly, H., Silva, M. G. da, Vitolo, U., Jack, A., Meignan, M., Lopez-Guillermo, A., Walewski, J., André, M., Johnson, P. W., Pfreundschuh, M., & Ladetto, M. (2015). Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Annals of Oncology, 26, v116–v125. https://doi.org/10.1093/annonc/mdv304

Umemura, M., Baljinnyam, E., Feske, S., De Lorenzo, M. S., Xie, L.-H., Feng, X., Oda, K., Makino, A., Fujita, T., Yokoyama, U., Iwatsubo, M., Chen, S., Goydos, J. S., Ishikawa, Y., & Iwatsubo, K. (2014). Store-operated Ca2+ entry (SOCE) regulates melanoma proliferation and cell migration. PloS One, 9(2), e89292. https://doi.org/10.1371/journal.pone.0089292

Vashisht, A., Trebak, M., & Motiani, R. K. (2015). STIM and Orai proteins as novel targets for cancer therapy. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. American Journal of Physiology - Cell Physiology, 309(7), C457–C469. https://doi.org/10.1152/ajpcell.00064.2015

Wang, J., Zhang, C., Chen, K., Tang, H., Tang, J., Song, C., & Xie, X. (2015). ERβ1 inversely correlates with PTEN/PI3K/AKT pathway and predicts a favorable prognosis in triple-negative breast cancer. Breast Cancer Research and Treatment, 152(2), 255–269. https://doi.org/10.1007/s10549-015-3467-3

Wang, W., Ren, Y., Wang, L., Zhao, W., Dong, X., Pan, J., Gao, H., & Tian, Y. (2018). Orai1 and Stim1 Mediate the Majority of Store-Operated Calcium Entry in Multiple Myeloma and Have Strong Implications for Adverse Prognosis. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 48(6), 2273–2285. https://doi.org/10.1159/000492645

Yang, S., Zhang, J. J., & Huang, X.-Y. (2009). Orai1 and STIM1 Are Critical for Breast Tumor Cell Migration and Metastasis. Cancer Cell, 15(2), 124–134. https://doi.org/10.1016/j.ccr.2008.12.019

Zhao, H., Yan, G., Zheng, L., Zhou, Y., Sheng, H., Wu, L., Zhang, Q., Lei, J., Zhang, J., Xin, R., Jiang, L., Zhang, X., Chen, Y., Wang, J., Xu, Y., Li, D., & Li, Y. (2020). STIM1 is a metabolic checkpoint regulating the invasion and metastasis of hepatocellular carcinoma. Theranostics, 10(14), 6483–6499. https://doi.org/10.7150/thno.44025

Buy PDF $50.00

Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
550
View
0
Share