Integrative Biomedical Research | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Lung-Targeted Solid Lipid Nanoparticles for Enhanced Pulmonary Delivery of Anti-Tubercular Drugs: A Novel Approach to Improve Bioavailability

Paulami Pal1, Subhabrata Ray2, Anup Kumar Das3, Manjir Sarma Kataki1, Saurav Dey4, Partha Pratim Dutta5, Tumpa Sarkar1, Mohini Singh1, Niva Rani Gogoi1, Bhaskar Mazumder1*

+ Author Affiliations

Journal of Angiotherapy 8(12) 1-12 https://doi.org/10.25163/angiotherapy.81210047

Submitted: 02 October 2024  Revised: 26 December 2024  Published: 31 December 2024 

Solid lipid nanoparticles improved anti-tubercular drug encapsulation, stability, and lung retention, offering a promising targeted pulmonary delivery approach for tuberculosis treatment.

Abstract


Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a highly infectious airborne disease affecting one-third of the global population and causing over one million deaths annually. While primarily targeting the lungs, TB can affect multiple organs, posing a significant global health burden. This study explores lipid drug conjugation as a novel targeted therapy for TB. Aerosolization or inhalation of lipid nanoparticle-based colloidal systems offers a promising approach for pulmonary drug delivery, directly targeting the lungs, where TB infection originates. Methods: A tripartite solid lipid nanoparticle (SLN)-based anti-TB formulation was developed using the solvent diffusion technique for prolonged lung delivery. This combination therapy incorporated Isoniazid (INH), Rifampicin (RIF), and Pyrazinamide (PYZ)—the gold-standard TB treatment regimen. Results: The formulated SLNs demonstrated an encapsulation efficiency of 40.53% to 63.73%. Physicochemical characterization, including particle size analysis and transmission electron microscopy (TEM), confirmed spherical nanoparticles with a smooth surface, measuring between 345.0 nm and 640.6 nm. The drug release profile was pH-dependent. Notably, SLNs exhibited exceptional long-term stability. In vivo studies revealed prolonged lung retention compared to nebulized nasal solutions, indicating effective pulmonary targeting and sustained drug release in the bronchiole tree. Conclusion: The developed lipoidal nanoparticles enhanced the biopharmaceutical properties of anti-TB drugs, offering a promising strategy for targeted pulmonary therapy.

Keywords: Solid lipid nanoparticles, Pulmonary drug delivery, Tuberculosis treatment, Rifampicin bioavailability, Inhalable nano-formulation

References


Adhikari, P., Pal, P., Das, A. K., Ray, S., Bhattacharjee, A., & Mazumder, B. (2017). Nano lipid-drug conjugate: An integrated review. International Journal of Pharmaceutics, 529(1-2), 629-641.

Agrawal, S., & Panchagnula, R. (2005). Implication of biopharmaceutics and pharmacokinetics of rifampicin in variable bioavailability from solid oral dosage forms. Biopharmaceutics & Drug Disposition, 26(8), 321-334.

Becker, C., Dressman, J. B., & Amidon, G. L., et al. (2008). Biowaiver monographs for immediate release solid oral dosage forms: Pyrazinamide. Journal of Pharmaceutical Sciences, 97(9), 3709-3720.

Becker, C., Dressman, J. B., Amidon, G. L., et al. (2007). Biowaiver monographs for immediate release solid oral dosage forms: Isoniazid. Journal of Pharmaceutical Sciences, 96(3), 522-531.

Becker, C., Dressman, J. B., Junginger, H. E., et al. (2009). Biowaiver monographs for immediate release solid oral dosage forms: Rifampicin. Journal of Pharmaceutical Sciences, 98(7), 2252-2267.

Bhattacharjee, A., Das, P. J., Dey, S., Nayak, A. K., Roy, P. K., Chakrabarti, S., Marbaniang, D., Das, S. K., Ray, S., Chattopadhyay, P., & Mazumder, B. (2020). Development and optimization of besifloxacin hydrochloride loaded liposomal gel prepared by thin film hydration method using 3² full factorial design. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124071.

Bhowmik, D., Chiranjib, R. M., Jayakar, B., & Kumar, K. P. S. (2009). Recent trends of drug used treatment of tuberculosis. Journal of Chemical and Pharmaceutical Research, 1(1), 113–133.

Blomberg, B., Spinaci, S., Fourie, B., & Laing, R. (2001). The rationale for recommending fixed-dose combination tablets for treatment of tuberculosis. Bulletin of the World Health Organization, 79, 61–68.

Bloom, B. R., Atun, R., Cohen, T., Dye, C., Fraser, H., Gomez, G. B., Knight, G., Murray, M., Nardell, E., Rubin, E., Salomon, J., Vassall, A., Volchenkov, G., White, R., Wilson, D., & Yadav, P. (2017). Tuberculosis. In K. K. Holmes, S. Bertozzi, B. R. Bloom, & P. Jha (Eds.), Major infectious diseases (3rd ed., Chap. 11). The International Bank for Reconstruction and Development / The World Bank.

Bomanji, J., Gupta, N., Gulati, P., & Das, C. (2015). Imaging in tuberculosis. Cold Spring Harbor Perspectives in Medicine, 5(6), a017814.

Cadete, A., Figueiredo, L., Lopes, R., Calado, C. C. R., Almeida, A. J., & Gonçalves, L. M. D. (2012). Development and characterization of a new plasmid delivery system based on chitosan–sodium deoxycholate nanoparticles. European Journal of Pharmaceutical Sciences, 45(4), 451-458.

D'Addio, S. M., Reddy, V. M., Liu, Y., Sinko, P. J., Einck, L., & Prud’homme, R. K. (2015). Antitubercular nanocarrier combination therapy: Formulation strategies and in vitro efficacy for rifampicin and SQ641. Molecular Pharmaceutics, 12(5), 1554–1563.

Das, P. J., Paul, P., Mukherjee, B., Mazumder, B., Mondal, L., Baishya, R., Chatterjee, D. M., & Dey, S. K. (2015). Pulmonary delivery of voriconazole loaded nanoparticles providing a prolonged drug level in lungs: A promise for treating fungal infection. Molecular Pharmaceutics, 12(8), 2651-2664.

del Pozo-Rodríguez, A., Solinís, M. A., Gascón, A. R., & Pedraz, J. L. (2009). Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. European Journal of Pharmaceutics and Biopharmaceutics, 71(2), 181-189.

Enache, M., Toader, A. M., & Enache, M. I. (2016). Mitoxantrone-surfactant interactions: A physicochemical overview. Molecules, 21(10), 1356.

Freire, F. D., Camara, M. C., Dantas, M. G., Aragao, C. F. S., Moura, T. F. A. L., & Raffin, F. N. (2014). Gastric-resistant isoniazid pellets reduced degradation of rifampicin in acidic medium. Brazilian Journal of Pharmaceutical Sciences, 50(4), 749-755.

Gaspar, D. P., Faria, V., Gonçalves, L. D. M., Taboada, P., Remuñán-López, C., & Almeida, A. J. (2016). Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies. International Journal of Pharmaceutics, 497(1-2), 199-209.

Gaur, P. K., Mishra, S., Bajpai, M., & Mishra, A. (2014). Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: In vitro drug release and pharmacokinetics studies. BioMed Research International, 2014, 1-9.

Gelperina, S., Kisich, K., Iseman, M. D., & Heifets, L. (2005). The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. American Journal of Respiratory and Critical Care Medicine, 172, 1487-1490.

Gordillo-Galeano, A., Ospina-Giraldo, L. F., & Mora-Huertas, C. E. (2021). Lipid nanoparticles with improved biopharmaceutical attributes for tuberculosis treatment. International Journal of Pharmaceutics, 596, 120321.

Gupta, S., Grieco, M. H., & Siegel, I. (1975). Suppression of T-lymphocyte rosettes by rifampicin: Studies in normal and patients with tuberculosis. Annals of Internal Medicine, 82(4), 484-488.

Haraldsson, B., Nystrom, J., & Deen, W. M. (2008). Properties of the glomerular barrier and mechanisms of proteinuria. Physiological Reviews, 88(2), 451-487.

Hussain, A., Siddique, M. U. M., Singh, S. K., Samad, A., Beg, S., & Wais, M. (2015). Lipid-drug conjugates for oral bioavailability enhancement. Recent Patents on Nanomedicine, 5, 87-95.

ICH Official Website. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH).

Khatak, S., Semwal, U. P., Pandey, M. K., & Dureja, H. (2018). Investigation of antimycobacterial potential of solid lipid nanoparticles against M. smegmatis. The Pharma Innovation Journal, 7(9), 325-329.

Kim, B. J., Im, S. S., & Oh, S. G. (2001). Investigation on the solubilization locus of aniline-HCl salt in SDS micelles with 1H NMR spectroscopy. Langmuir, 17(2), 565-566.

Maji, R., Dey, N. S., Satapathy, B. S., Mukherjee, B., et al. (2014). Preparation and characterization of tamoxifen citrate loaded nanoparticles for breast cancer therapy. International Journal of Nanomedicine, 9, 3107-3118.

Makoni, P. A., Wa Kasongo, K., & Walker, R. B. (2019). Short-term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics, 11(8), 397.

Marques, M. R. C., Loebenberg, R., & Almukainzi, M. (2011). Simulated biological fluids with possible application in dissolution testing. Dissolution Technologies, 18(1), 15-28.

Maya, N., Mishra, B., & Chawla, R. (2015, March 16–18). Formulation and characterization of polymeric nanoparticles of anti-tubercular drugs-rifampicin, isoniazid, pyrazinamide and ethambutol by modified solvent emulsification evaporation method. Exhibition on Pharmaceutics & Novel Drug Delivery Systems, Proceeding of the 5th International Conference, Crowne Plaza, Dubai, UAE. Pharmaceutical Analytical Acta, 6, 1.

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55-63.

Mukherjee, S., Ray, S., & Thakur, R. S. (2009). Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences, 71(4), 349-358.

Müller, R. H., & Olbrich, C. (2004). Lipid matrix-drug conjugates particle for controlled release of active ingredient. US Patent No. US 6,770,299 B1.

Nasiruddin, M., Neyaz, M. K., & Das, S. (2017). Nanotechnology-based approach in tuberculosis treatment. Tuberculosis Research and Treatment, 2017, Article ID 4920209.

Pal, P., Adhikary, P., Ray, S., Das, P., Marbaniang, D., Das, A. K., & Mazumder, B. (2018). Development and comparison of hydrophobic drug loaded NLC, SLN, and LDC nanoparticle for treatment of pulmonary tuberculosis. World Journal of Pharmaceutical and Pharmaceutical Sciences, 7(8), 1270-1287.

Pal, P., Ray, S., Das, A. K., & Mazumder, B. (2019). Therapeutic nanostructures in antitubercular therapy. In B. Mazumder, S. Ray, P. Pal, & Y. Pathak (Eds.), Nanotechnology: Therapeutic, nutraceutical, and cosmetic advances (p. 57). CRC Press.

Paliwal, R., Paliwal, S. R., Agrawal, G. P., & Vyas, S. P. (2011). Biomimetic solid lipid nanoparticles for oral bioavailability enhancement of low molecular weight heparin and its lipid conjugates: In vitro and in vivo evaluation. Molecular Pharmaceutics, 8(4), 1314-1321.

Pandey, R., & Khuller, G. K. (2006). Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. Journal of Antimicrobial Chemotherapy, 57(6), 1146-1152.

Pandey, R., Sharma, A., Zahoor, A., Sharma, S., Khuller, G. K., & Prasad, B. (2003). Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. Journal of Antimicrobial Chemotherapy, 52, 981-986.

Pandey, R., Sharma, S., & Khuller, G. K. (2005). Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis, 85(5-6), 415-420.

Pandey, R., Zahoor, A., Sharma, S., & Khuller, G. K. (2003). Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis, 83(6), 373-378.

Petersdorf, R. G., & Sherris, J. C. (1965). Methods and significance of in vitro testing of bacterial sensitivity to drugs. American Journal of Medicine, 39, 766-775.

Ramappa, V., & Aithal, G. P. (2013). Hepatotoxicity related to anti-tuberculosis drugs: Mechanisms and management. Journal of Clinical and Experimental Hepatology, 3(1), 37–49.

Rangel-Yagui, C. O., Pessoa, A. Jr., & Tavares, L. C. (2005). Micellar solubilization of drugs. Journal of Pharmacy and Pharmaceutical Sciences, 8(2), 147-165.

Rodrigues, S., Cordeiro, C., Seijo, B., Remuñán-López, C., & Grenha, A. (2015). Hybrid nanosystems based on natural polymers as protein carriers for respiratory delivery: Stability and toxicological evaluation. Carbohydrate Polymers, 123, 369-380.

Scherliess, R. (2011). The MTT assay as a tool to evaluate and compare excipient toxicity in vitro on respiratory epithelial cells. International Journal of Pharmaceutics, 411(1-2), 98-105.

Semalty, A., Tanwar, Y. S., Singh, D., & Rawat, M. S. M. (2014). Phosphatidylcholine complex in improving oral drug delivery of epicatechin: Preparation and characterization. Journal of Drug Discovery and Development, 1(1), 46-55.

Shishoo, C. J., Shah, S. A., Rathod, I. S., Savale, S. S., Kotecha, J. S., & Shah, P. B. (1999). Stability of rifampicin in dissolution medium in presence of isoniazid. International Journal of Pharmaceutics, 190, 109-123.

Singh, C., Bhatt, T. D., Gill, M. S., & Suresh, S. (2014). Novel rifampicin-phospholipid complex for tubercular therapy: Synthesis, physicochemical characterization, and in vivo evaluation. International Journal of Pharmaceutics, 460(1-2), 220-227.

Singh, S., Mariappan, T. T., Sankar, R., Sarda, N., & Singh, B. (2001). A critical review of the probable reasons for the poor/variable bioavailability of rifampicin from anti-tubercular fixed-dose combination (FDC) products, and the likely solutions to the problem. International Journal of Pharmaceutics, 228, 5-17.

Sinha, B., & Mukherjee, B. (2012). Development of an inhalation chamber and a dry powder inhaler device for administration of pulmonary medication in animal model. Drug Development and Industrial Pharmacy, 38(2), 171-179.

Smith, I. (2003). Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clinical Microbiology Reviews, 16(3), 463–496.

Tousif, S., Singh, D. K., Ahmad, S., et al. (2014). Isoniazid-induced apoptosis of activated CD4+ T cells: Implications for post-therapy tuberculosis reactivation and reinfection. Journal of Biological Chemistry, 289(44), 30190-30195.

Varghese, S., Anil, A., Scaria, S., & Abraham, E. (2018). Nanoparticulate technology in the treatment of tuberculosis: A review. International Journal of Pharmaceutical Sciences and Research, 9(10), 4109–4116.

World Health Organization. (2020). Tuberculosis. Retrieved May 5, 2020, from https://www.who.int/news-room/fact-sheets/detail/tuberculosis

Zahoor, A., Sharma, S., & Khuller, G. K. (2005). Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. International Journal of Antimicrobial Agents, 26(4), 298-303.

Zhao, Y., Chang, Y. X., Hu, X., Liu, C. Y., Quan, L. H., & Liao, Y. H. (2017). Solid lipid nanoparticles for sustained pulmonary delivery of Yuxingcao essential oil: Preparation, characterization, and in vivo evaluation. International Journal of Pharmaceutics, 516(1-2), 364-371.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
140
View
0
Share