Natural Polyphenol-Rich Inhibitors of Pancreatic Lipase for Obesity Management – A Systematic Review
Kamran Javed Naquvi 1*
Journal of Angiotherapy 8(10) 1-17 https://doi.org/10.25163/angiotherapy.8109866
Submitted: 17 August 2024 Revised: 15 October 2024 Published: 16 October 2024
This review discusses the plant-derived pancreatic lipase inhibitors as potential for natural, effective obesity management, reducing fat absorption and promoting metabolic health.
Abstract
Background: Obesity, a critical public health challenge, is associated with an increased risk of chronic diseases such as cardiovascular disease, diabetes, and cancer. Body mass index (BMI) categorizes obesity levels, with trends indicating a growing prevalence worldwide. Dietary choices and sedentary lifestyles contribute significantly to this condition, yet treatments remain limited by side effects. Pancreatic lipase, the primary enzyme in dietary fat digestion, presents a promising target for obesity management. Inhibitors of pancreatic lipase reduce fat absorption, lowering caloric intake and aiding in weight management. Synthetic inhibitors like orlistat are effective but lead to adverse gastrointestinal and systemic effects, creating a demand for safer alternatives. Methods: A thorough literature review was conducted using PubMed, Elsevier, ScienceDirect, and Google Scholar databases, employing search terms such as "herbal drugs," "polyphenols," "pancreatic lipase inhibitors," "antilipase," "natural products," and "antiobesity herbal drugs." Discussion and Conclusion: Polyphenol-rich plants such as Camellia sinensis (tea), Coffea (coffee), Punica granatum (pomegranate), Vitis vinifera (grape), and Curcuma longa (turmeric) exhibit natural pancreatic lipase inhibitory properties, offering therapeutic potential for obesity management. This review explores the bioactive compounds in these plants, emphasizing their efficacy and minimal side effects compared to synthetic drugs, and underscores the importance of further research in developing natural, polyphenol-based treatments for obesity.
Keywords: Polyphenols, Pancreatic lipase inhibitors, Obesity, Fat absorption, Plant-based therapy
References
Alizadeh, Z., & Fattahi, M. (2021). Essential oil, total phenolic, flavonoids, anthocyanins, carotenoids and antioxidant activity of cultivated Damask Rose (Rosa damascena) from Iran: With chemotyping approach concerning morphology and composition. Scientia Horticulturae, 288, 110341.
Alnukari, S. (2020). Anti-lipase activity of Rosa damascena extracts. Egyptian Journal of Chemistry, 63(3), 861-865. doi: 10.21608/ejchem.2019.10388.1686
Andrade, C., Ferreres, F., Gomes, N. G., Gil-Izquierdo, A., Bapia, S., Duangsrisai, S., A., Bapia, S., Duangsrisai, S., Pereira, D.M., Andrade, P.B. and Valentao, P., (2020). Gustavia gracillima Miers. flower effects on enzymatic targets underlying metabolic disorders and characterization of its polyphenolic content by HPLC-DAD-ESI/MSn. Food Research International, 137, 109694.
Austin, C., Stewart, D., Allwood, J. W., & McDougall, G. J. (2018). Extracts from the edible seaweed, Ascophyllum nodosum, inhibit lipase activity in vitro: contributions of phenolic and polysaccharide components. Food & Function, 9(1), 502-510.
Aydeniz-Guneser, B., & Guneser, O. (2020). Cold-pressed grapefruit (Citrus paradisi L.) oil. In Cold pressed oils (pp. 497-513). Academic Press. https://doi.org/10.1016/B978-0-12-818188-1.00045-1.
Caballero, B., Finglas, P., & Toldrá, F. (2015). Berries and Related Fruits, Editor(s): Benjamin Caballero, Paul M. Finglas, Fidel Toldrá, Encyclopedia of Food and Health, Academic Press, 364-371. https://doi.org/10.1016/B978-0-12-384947-2.00060-X.
Caballero, B., Finglas, P., & Toldrá, F. (2015). Encyclopedia of food and health. Editor(s): Benjamin Caballero, Paul M. Finglas, Fidel Toldrá, Encyclopedia of Food and Health, Academic Press, 136-140. https://doi.org/10.1016/B978-0-12-384947-2.00165-3.
Can Baser, K. H. (2008). Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Current Pharmaceutical Design, 14(29), 3106-3119.
Cao, Q., Mei, S., Mehmood, A., Sun, Y., & Chen, X. (2024). Inhibition of pancreatic lipase by coffee leaves-derived polyphenols: A mechanistic study. Food Chemistry, 444, 138514. doi: 10.1016/j.foodchem.2024.138514.
Cardullo, N., Calcagno, D., Pulvirenti, L., Sciacca, C., Pittalà, M. G. G., Maccarronello, A. E., ... & Muccilli, V. (2024). Flavonoids with lipase inhibitory activity from lemon squeezing waste: isolation, multispectroscopic and in silico studies. Journal of the Science of Food and Agriculture, 104(12), 7639-7648.
Cha, K. H., Song, D. G., Kim, S. M., & Pan, C. H. (2012). Inhibition of gastrointestinal lipolysis by green tea, coffee, and gomchui (Ligularia fischeri) tea polyphenols during simulated digestion. Journal of Agricultural and Food Chemistry, 60(29), 7152-7157.
Chavan, R. S., Khatib, N. A., Hariprasad, M. G., Patil, V. S., & Redhwan, M. A. M. (2024). Synergistic effects of Momordica charantia, Nigella sativa, and Anethum graveolens on metabolic syndrome targets: In vitro enzyme inhibition and in-silico analyses. Heliyon, 10(2), e24907. doi: 10.1016/j.heliyon.2024.e24907
Cheah, J. S. (1996). Current management of obesity. Singapore Med J, 37, 299-303.
Chen, T. Y., Wang, M. M., Hsieh, S. K., Hsieh, M. H., Chen, W. Y., & Tzen, J. T. (2018). Pancreatic lipase inhibition of strictinin isolated from Pu’er tea (Cammelia sinensis) and its anti-obesity effects in C57BL6 mice. Journal of Functional Foods, 48, 1-8.
Chen, T., Li, Y., & Zhang, L. (2017). Nine different chemical species and action mechanisms of pancreatic lipase ligands screened out from Forsythia suspensa leaves all at one time. Molecules, 22(5), 795.
Chun, S. S., Vattem, D. A., Lin, Y. T., & Shetty, K. (2005). Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochemistry, 40(2), 809-816.
da Silva, T. B. V., Dias, M. I., Pereira, C., Mandim, F., Ivanov, M., Sokovic, M., ... & Peralta, R. M. (2023). Purple tea: chemical characterization and evaluation as an inhibitor of pancreatic lipase and fat digestion in mice. Food & Function, 14(3), 1761-1772.
Dechakhamphu, A., & Wongchum, N. (2015). Screening for anti-pancreatic lipase properties of 28 traditional Thai medicinal herbs. Asian Pacific Journal of Tropical Biomedicine, 5(12), 1042-1045.
Deng, M., Dong, L., Jia, X., Huang, F., Chi, J., Muhammad, Z., ... & Zhang, R. (2022). The flavonoid profiles in the pulp of different pomelo (Citrus grandis L. Osbeck) and grapefruit (Citrus paradisi Mcfad) cultivars and their in vitro bioactivity. Food Chemistry: X, 15, 100368.
Dragano, N. R., Fernø, J., Diéguez, C., López, M., & Milbank, E. (2020). Recent updates on obesity treatments: available drugs and future directions. Neuroscience, 437, 215-239.
Dwibedi, V., Jain, S., Singhal, D., Mittal, A., Rath, S. K., & Saxena, S. (2022). Inhibitory activities of grape bioactive compounds against enzymes linked with human diseases. Applied Microbiology and Biotechnology, 106(4), 1399-1417.
Edashige, Y., Murakami, N., & Tsujita, T. (2008). Inhibitory effect of pectin from the segment membrane of citrus fruits on lipase activity. Journal of Nutritional Science and Vitaminology, 54(5), 409-415.
Fabroni, S., Ballistreri, G., Amenta, M., Romeo, F. V., & Rapisarda, P. (2016). Screening of the anthocyanin profile and in vitro pancreatic lipase inhibition by anthocyanin-containing extracts of fruits, vegetables, legumes and cereals. Journal of the Science of Food and Agriculture, 96(14), 4713-4723.
Feng, L., Liu, P., Zheng, P., Zhang, L., Zhou, J., Gong, Z., ... & Wan, X. (2020). Chemical profile changes during pile fermentation of Qingzhuan tea affect inhibition of α-amylase and lipase. Scientific reports, 10(1), 3489. doi: 10.1038/s41598-020-60265-2.
Fernando, W. I. T., Attanayake, A. M. K. C., Perera, H. K. I., Sivakanesan, R., Jayasinghe, L., Araya, H., & Fujimoto, Y. (2019). Isolation, identification and characterization of pancreatic lipase inhibitors from Trigonella foenum-graecum seeds. South African Journal of Botany, 121, 418-421.
Filippatos, T. D., Derdemezis, C. S., Gazi, I. F., Nakou, E. S., Mikhailidis, D. P., & Elisaf, M. S. (2008). Orlistat-associated adverse effects and drug interactions: a critical review. Drug safety, 31, 53-65.
Fuloria, S., Mehta, J., Chandel, A., Sekar, M., Rani, N. N. I. M., Begum, M. Y., ... & Fuloria, N. K. (2022). A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Frontiers in Pharmacology, 13, 820806.
Gao, H. X., Liang, H. Y., Chen, N., Shi, B., & Zeng, W. C. (2022). Potential of phenolic compounds in Ligustrum robustum (Rxob.) Blume as antioxidant and lipase inhibitors: Multi-spectroscopic methods and molecular docking. Journal of Food Science, 87(2), 651-663.
Gholamhoseinian, A., Shahouzehi, B., & Sharifi-Far, F. (2010). Inhibitory effect of some plant extracts on pancreatic lipase. International Journal Pharmacol, 6, 18-24.
Gill, T. (2006). Epidemiology and health impact of obesity: an Asia Pacific perspective. Asia Pacific Journal of Clinical Nutrition, 15, 3-14.
Gironés-Vilaplana, A., Moreno, D. A., & García-Viguera, C. (2014). Phytochemistry and biological activity of Spanish Citrus fruits. Food & function, 5(4), 764-772.
Glisan, S. L., Grove, K. A., Yennawar, N. H., & Lambert, J. D. (2017). Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies. Food Chemistry, 216, 296-300. doi: 10.1016/j.foodchem.2016.08.052.
Gondoin, A., Grussu, D., Stewart, D., & McDougall, G. J. (2010). White and green tea polyphenols inhibit pancreatic lipase in vitro. Food Research International, 43(5), 1537-1544.
Gonzatto, M. P., & Santos, J. S. (2023). Introductory chapter: world citrus production and research. In Citrus Research-Horticultural and Human Health Aspects. IntechOpen. doi: 10.5772/intechopen.110519
Gudin, S. (2000). Rose: genetics and breeding. Plant Breed Rev, 17, 159-89.
Ha, M. T., Tran, M. H., Ah, K. J., Jo, K. J., Kim, J., Kim, W. D., ... & Min, B. S. (2016). Potential pancreatic lipase inhibitory activity of phenolic constituents from the root bark of Morus alba L. Bioorganic & Medicinal Chemistry Letters, 26(12), 2788-2794.
Haase, C. L., Eriksen, K. T., Lopes, S., Satylganova, A., Schnecke, V., & McEwan, P. (2021). Body mass index and risk of obesity-related conditions in a cohort of 2.9 million people: Evidence from a UK primary care database. Obesity Science & Practice, 7(2), 137-147. doi: 10.1002/osp4.474.
Hadrich, F., Cher, S., Gargouri, Y. T., & Adel, S. (2014). Antioxidant and lipase inhibitory activities and essential oil composition of pomegranate peel extracts. Journal of Oleo Science, 63(5), 515-525.
He, X. Q., Zou, H. D., Liu, Y., Chen, X. J., Atanasov, A. G., Wang, X. L., ... & Gan, R. Y. (2024). Discovery of Curcuminoids as Pancreatic Lipase Inhibitors from Medicine-and-Food Homology Plants. Nutrients, 16(15), 2566.
Heck, A. M., Yanovski, J. A., & Calis, K. A. (2000). Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 20(3), 270-279. doi: 10.1592/phco.20.4.270.34882.
Hruby, A., & Hu, F. B. (2015). The epidemiology of obesity: a big picture. Pharmacoeconomics, 33, 673-689. doi: 10.1007/s40273-014-0243-x.
Huang, H., Han, M. H., Gu, Q., Wang, J. D., Zhao, H., Zhai, B. W., ... & Fu, Y. J. (2023). Identification of pancreatic lipase inhibitors from Eucommia ulmoides tea by affinity-ultrafiltration combined UPLC-Orbitrap MS and in vitro validation. Food Chemistry, 426, 136630.
Huang, R., Zhang, Y., Shen, S., Zhi, Z., Cheng, H., Chen, S., & Ye, X. (2020). Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: An in vitro study. Food Chemistry, 326, 126785.
Huang, X., Zhu, J., Wang, L., Jing, H., Ma, C., Kou, X., & Wang, H. (2020). Inhibitory mechanisms and interaction of tangeretin, 5-demethyltangeretin, nobiletin, and 5-demethylnobiletin from citrus peels on pancreatic lipase: Kinetics, spectroscopies, and molecular dynamics simulation. International Journal of Biological Macromolecules, 164, 1927-1938.
Ikeda, I., Tsuda, K., Suzuki, Y., Kobayashi, M., Unno, T., Tomoyori, H., ... & Kakuda, T. (2005). Tea catechins with a galloyl moiety suppress postprandial hypertriacylglycerolemia by delaying lymphatic transport of dietary fat in rats. The Journal of Nutrition, 135(2), 155-159.
Insanu, M., Karimah, H., Pramastya, H., & Fidrianny, I. (2021). Phytochemical compounds and pharmacological activities of Vitis vinifera L.: An updated review. Biointerface Res. Appl. Chem, 11(13829), 10-33263.
Itoh, K., Matsukawa, T., Murata, K., Nishitani, R., Yamagami, M., Tomohiro, N., ... & Matsuda, H. (2019). Pancreatic lipase inhibitory activity of Citrus unshiu leaf extract. Natural Product Communications, 14(9), 1934578X19873439. doi:10.1177/1934578X19873439.
Iwata, E., Hotta, H., & Goto, M. (2012). Hypolipidemic and bifidogenic potentials in the dietary fiber prepared from Mikan (Japanese mandarin orange: Citrus unshiu) albedo. Journal of Nutritional Science and Vitaminology, 58(3), 175-180.
Jaradat, N., Hamayel, A., Assaassa, A., Hammad, F., Mosa, A., Nafaa, F., ... & Barqawi, A. (2021). Hexane extract of Curcuma longa L. inhibits the activities of key enzymes and pro-inflammatory adipokines linked to obesity. European Journal of Integrative Medicine, 48, 101400.
Jaradat, N., Zaid, A. N., Hussein, F., Zaqzouq, M., Aljammal, H., & Ayesh, O. (2017). Anti-lipase potential of the organic and aqueous extracts of ten traditional edible and medicinal plants in Palestine; a comparison study with orlistat. Medicines, 4(4), 89.
Jeong, J. Y., Jo, Y. H., Kim, S. B., Liu, Q., Lee, J. W., Mo, E. J., ... & Lee, M. K. (2015). Pancreatic lipase inhibitory constituents from Morus alba leaves and optimization for extraction conditions. Bioorganic & Medicinal Chemistry Letters, 25(11), 2269-2274.
Jian, J., Yuan, J., Fan, Y., Wang, J., Zhang, T., Kool, J., & Jiang, Z. (2022). High-resolution bioassay profiling with complemented sensitivity and resolution for pancreatic lipase inhibitor screening. Molecules, 27(20), 6923. doi: 10.3390/molecules27206923.
Jin, X., Qiu, T., Li, L., Yu, R., Chen, X., Li, C., ... & Jiang, T. (2023). Pathophysiology of obesity and its associated diseases. Acta Pharmaceutica Sinica B, 13(6), 2403-2424.
Jing, Y., Luo, L., Zeng, Z., Zhao, X., Huang, R., Song, C., ... & Jin, S. (2024). Targeted Screening of Curcumin Derivatives as Pancreatic Lipase Inhibitors Using Computer-Aided Drug Design. ACS Omega, 9(25), 27669–27679.
Juhel, C., Armand, M., Pafumi, Y., Rosier, C., Vandermander, J., & Lairon, D. (2000). Green tea extract (AR25®) inhibits lipolysis of triglycerides in gastric and duodenal medium in vitro. The Journal of Nutritional Biochemistry, 11(1), 45-51.
Kaur, J., & Kaur, G. (2015). An insight into the role of citrus bioactives in modulation of colon cancer. Journal of Functional Foods, 13, 239-261.
Kawaguchi, K., Mizuno, T., Aida, K., & Uchino, K. (1997). Hesperidin as an inhibitor of lipases from porcine pancreas and Pseudomonas. Bioscience, Biotechnology, and Biochemistry, 61(1), 102-104.
Kelly, T., Yang, W., Chen, C. S., Reynolds, K., & He, J. (2008). Global burden of obesity in 2005 and projections to 2030. International Journal of Obesity, 32(9), 1431-1437.
Khatlawala, V., & Roghelia, V. (2023). Anti-Lipase and Antioxidant Activities of the Selected Plant Materials. The Indian Journal of Nutrition and Dietetics, 60(3), 389–397. https://doi.org/10.21048/IJND.2023.60.3.33246
Kim, G. N., Shin, M. R., Shin, S. H., Lee, A. R., Lee, J. Y., Seo, B. I., ... & Roh, S. S. (2016). Study of antiobesity effect through inhibition of pancreatic lipase activity of Diospyros kaki fruit and Citrus unshiu peel. BioMed Research International, 2016(1), 1723042. doi: 10.1155/2016/1723042.
Kim, H.Y. and Kang, M.H., 2005. Screening of Korean medicinal plants for lipase inhibitory activity. Phytotherapy Research, 19(4), pp.359-361.
Kim, J. Y., Lee, Y. S., Park, E. J., & Lee, H. J. (2022). Honeysuckle berry (Lonicera caerulea L.) inhibits lipase activity and modulates the gut microbiota in high-fat diet-fed mice. Molecules, 27(15), 4731.
Kim, T. H., Kim, J. K., Ito, H., & Jo, C. (2011). Enhancement of pancreatic lipase inhibitory activity of curcumin by radiolytic transformation. Bioorganic & Medicinal Chemistry Letters, 21(5), 1512-1514.
Kim, Y. M., Lee, E. W., Eom, S. H., & Kim, T. H. (2014). Pancreatic lipase inhibitory stilbenoids from the roots of Vitis vinifera. International Journal of Food Sciences and Nutrition, 65(1), 97-100.
Koene, R. J., Prizment, A. E., Blaes, A., & Konety, S. H. (2016). Shared risk factors in cardiovascular disease and cancer. Circulation, 133(11), 1104-1114. doi: 10.1161/circulationaha.115.020406.
Koo, S. I., & Noh, S. K. (2007). Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. The Journal of Nutritional Biochemistry, 18(3), 179-183. doi: 10.1016/j.jnutbio.2006.12.005.
Kotha, R. R., & Luthria, D. L. (2019). Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules, 24(16), 2930.
Kumar, S., & Alagawadi, K. R. (2013). Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats. Pharmaceutical Biology, 51(5), 607-613.
Laurindo, L. F., Rodrigues, V. D., Minniti, G., de Carvalho, A. C. A., Zutin, T. L. M., DeLiberto, L. K., ... & Barbalho, S. M. (2024). Pomegranate (Punica granatum L.) phytochemicals target the components of metabolic syndrome. The Journal of Nutritional Biochemistry, 109670. DOI: 10.1016/j.jnutbio.2024.109670
Lei, F., Zhang, X. N., Wang, W., Xing, D. M., Xie, W. D., Su, H., & Du, L. J. (2007). Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice. International Journal of Obesity, 31(6), 1023-1029.
Liu, P. K., Weng, Z. M., Ge, G. B., Li, H. L., Ding, L. L., Dai, Z. R., ... & Hou, J. (2018). Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism. International Journal of Biological Macromolecules, 118, 2216-2223.
Liu, P. P., Zheng, P. C., Gong, Z. M., Wang, S. P., Teng, J., Gao, S. W., ... & Zheng, L. (2017). Analysis of aroma components in Qingzhuan dark tea. Food Sci, 38(8), 164-170.
Liu, S., Li, D., Huang, B., Chen, Y., Lu, X., & Wang, Y. (2013). Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. Journal of Ethnopharmacology, 149(1), 263-269.
Liu, T. T., Liu, X. T., Chen, Q. X., & Shi, Y. (2020). Lipase inhibitors for obesity: A review. Biomedicine & Pharmacotherapy, 128, 110314.
Liu, T. T., Liu, X. T., Huang, G. L., Liu, L., Chen, Q. X., & Wang, Q. (2022). Theophylline extracted from Fu Brick Tea affects the metabolism of preadipocytes and body fat in mice as a pancreatic lipase inhibitor. International Journal of Molecular Sciences, 23(5), 2525. doi: 10.3390/ijms23052525.
Lunagariya, N. A., Patel, N. K., Jagtap, S. C., & Bhutani, K. K. (2014). Inhibitors of pancreatic lipase: state of the art and clinical perspectives. EXCLI Journal, 13, 897-921.
Ma, Q. G., Tang, Y., Sang, Z. P., Dong, J. H., & Wei, R. R. (2021). Structurally diverse biflavonoids from the fruits of Citrus medica L. var. sarcodactylis Swingle and their hypolipidemic and immunosuppressive activities. Bioorganic Chemistry, 117, 105450.
Magaña-Rodríguez, O. R., Ortega-Pérez, L. G., Ayala-Ruiz, L. A., Piñon-Simental, J. S., Gallegos-Torres, O. F., & Rios-Chavez, P. (2023). Inhibitory effects of edible and medicinal plant extracts on the enzymatic activity of pancreatic lipase. Journal of the Mexican Chemical Society, 67(3), 172-181.
Maphetu, N., Unuofin, J. O., Masuku, N. P., Olisah, C., & Lebelo, S. L. (2022). Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L.(pomegranate) plant extracts: A review. Biomedicine & Pharmacotherapy, 153, 113256.
Marrelli, M., Menichini, F., Statti, G. A., Bonesi, M., Duez, P., Menichini, F., & Conforti, F. (2012). Changes in the phenolic and lipophilic composition, in the enzyme inhibition and antiproliferative activity of Ficus carica L. cultivar Dottato fruits during maturation. Food and Chemical Toxicology, 50(3-4), 726-733.
Martau, G. A., Bernadette-Emoke, T., Odocheanu, R., Soporan, D. A., Bochi?, M., Simon, E., & Vodnar, D. C. (2023). Vaccinium species (Ericaceae): Phytochemistry and biological properties of medicinal plants. Molecules, 28(4), 1533.
Martin, K. A., Mani, M. V., & Mani, A. (2015). New targets to treat obesity and the metabolic syndrome. European journal of pharmacology, 763, 64-74.
Mashmoul, M., Azlan, A., Khaza’ai, H., Mohd Yusof, B. N., & Mohd Noor, S. (2013). Saffron: a natural potent antioxidant as a promising anti-obesity drug. Antioxidants, 2(4), 293-308. https://doi.org/10.3390/antiox2040293
Masoudkabir, F., Mohammadifard, N., Mani, A., Ignaszewski, A., Davis, M. K., Vaseghi, G., ... & Sarrafzadegan, N. (2023). Shared Lifestyle-Related Risk Factors of Cardiovascular Disease and Cancer: Evidence for Joint Prevention. The Scientific World Journal, 2023(1), 2404806. doi: 10.1155/2023/2404806.
Masters, R. K., Powers, D. A., & Link, B. G. (2013). Obesity and US mortality risk over the adult life course. American Journal of Epidemiology, 177(5), 431-442. https://doi.org/10.1093/aje/kws325
Mayasankaravalli, C., Deepika, K., Lydia, D. E., Agada, R., Thagriki, D., Govindasamy, C., ... & Kim, H. J. (2020). Profiling the phytoconstituents of Punica granatum fruits peel extract and accessing its in-vitro antioxidant, anti-diabetic, anti-obesity, and angiotensin-converting enzyme inhibitory properties. Saudi Journal of Biological Sciences, 27(12), 3228-3234.
McDougall, G. J., Kulkarni, N. N., & Stewart, D. (2009). Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chemistry, 115(1), 193-199.
McDuffie, J. R., Calis, K. A., Booth, S. L., Uwaifo, G. I., & Yanovski, J. A. (2002). Effects of orlistat on fat-soluble vitamins in obese adolescents. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 22(7), 814-822.
Meng, L., Jiao, Y., Zhou, X., Liang, C., Yan, K., Zhao, Y., ... & Zhang, L. (2021). Leaf extract from Vitis vinifera L. reduces high fat diet-induced obesity in mice. Food & Function, 12(14), 6452-6463.
Mopuri, R., Ganjayi, M., Meriga, B., Koorbanally, N. A., & Islam, M. S. (2018). The effects of Ficus carica on the activity of enzymes related to metabolic syndrome. Journal of Food and Drug Analysis, 26(1), 201-210.
Moreno, D. A., Ilic, N., Poulev, A., Brasaemle, D. L., Fried, S. K., & Raskin, I. (2003). Inhibitory effects of grape seed extract on lipases. Nutrition, 19(10), 876-879. DOI: 10.1016/s0899-9007(03)00167-9
Narita, Y., Iwai, K., Fukunaga, T., & Nakagiri, O. (2012). Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil. Bioscience, Biotechnology, and Biochemistry, 76(12), 2329-2331.
Nasery, M., Hassanzadeh, M. K., Najaran, Z. T., & Emami, S. A. (2016). Rose (Rosa× damascena Mill.) essential oils. In Essential oils in Food Preservation, Flavor and Safety (pp. 659-665). Academic Press, 659-665, https://doi.org/10.1016/B978-0-12-416641-7.00075-4.
Nassiri-Asl, M., & Hosseinzadeh, H. (2009). Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive compounds. Phytotherapy Research, 23(9), 1197-1204.
Nassiri-Asl, M., & Hosseinzadeh, H. (2016). Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive constituents: an update. Phytotherapy Research, 30(9), 1392-1403.
Noorolahi, Z., Sahari, M. A., Barzegar, M., & Ahmadi Gavlighi, H. (2020). Tannin fraction of pistachio green hull extract with pancreatic lipase inhibitory and antioxidant activity. Journal of Food Biochemistry, 44(6), e13208.
Oliveira, R. F., Gonçalves, G. A., Inácio, F. D., Koehnlein, E. A., De Souza, C. G. M., Bracht, A., & Peralta, R. M. (2015). Inhibition of pancreatic lipase and triacylglycerol intestinal absorption by a pinhão coat (Araucaria angustifolia) extract rich in condensed tannin. Nutrients, 7(7), 5601-5614.
Ono, Y., Hattori, E., Fukaya, Y., Imai, S., & Ohizumi, Y. (2006). Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats. Journal of Ethnopharmacology, 106(2), 238-244.
Padilla-Camberos, E., Flores-Fernandez, J. M., Fernandez-Flores, O., Gutierrez-Mercado, Y., Carmona-de la Luz, J., Sandoval-Salas, F., ... & Allen, K. (2015). Hypocholesterolemic effect and in vitro pancreatic lipase inhibitory activity of an Opuntia ficus-indica extract. BioMed Research International, 2015(1), 837452.
Padwal, R. S., & Majumdar, S. R. (2007). Drug treatments for obesity: orlistat, sibutramine, and rimonabant. The Lancet, 369(9555), 71-77.
Pai, S. A., Martis, E. A. F., Joshi, S. G., Munshi, R. P., & Juvekar, A. R. (2018). Plumbagin exerts antiobesity effects through inhibition of pancreatic lipase and adipocyte differentiation. Phytotherapy Research, 32(8), 1631-1635.
Pan, H., Gao, Y., & Tu, Y. (2016). Mechanisms of body weight reduction by black tea polyphenols. Molecules, 21(12), 1659. doi: 10.3390/molecules21121659.
Parihar, S., & Sharma, D. (2021). A brief overview on Vitis Vinifera. Sch Acad J Pharm, 12, 231-239.
Parra, C., Muñoz, P., Bustos, L., Parra, F., Simirgiotis, M. J., & Escobar, H. (2021). UHPLC-DAD characterization of Origanum vulgare L. from Atacama desert Andean region and antioxidant, antibacterial and enzyme inhibition activities. Molecules, 26(7), 2100.
Quiroga, P. R., Grosso, N. R., Lante, A., Lomolino, G., Zygadlo, J. A., & Nepote, V. (2013). Chemical composition, antioxidant activity and anti-lipase activity of Origanum vulgare and Lippia turbinata essential oils. International Journal of Food Science & Technology, 48(3), 642-649.
Rahmani, A. H., Alsahli, M. A., & Almatroodi, S. A. (2017). Active constituents of pomegranates (Punica granatum) as potential candidates in the management of health through modulation of biological activities. Pharmacognosy Journal, 9(5), 689-695. 10.5530/pj.2017.5.109
Rajan, L., Palaniswamy, D., & Mohankumar, S. K. (2020). Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacological Research, 155, 104681.
Safaei, M., Sundararajan, E. A., Driss, M., Boulila, W., & Shapi'i, A. (2021). A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Computers in Biology and Medicine, 136, 104754.
Scheen, A. J., Finer, N., Hollander, P., Jensen, M. D., & Van Gaal, L. F. (2006). Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. The Lancet, 368(9548), 1660-1672.
Seyedan, A., Alshawsh, M. A., Alshagga, M. A., Koosha, S., & Mohamed, Z. (2015). Medicinal plants and their inhibitory activities against pancreatic lipase: a review. Evidence-Based Complementary and Alternative Medicine, 2015(1), 973143.
Singh, A. (2022). Hyperlipidemia in cardiovascular health and digestion. In Nutrition and Functional Foods in Boosting Digestion, Metabolism and Immune Health. Academic Press, 141-150.
Singletary, K. (2010). Oregano: overview of the literature on health benefits. Nutrition Today, 45(3), 129-138.
Smith, J. D., Fu, E., & Kobayashi, M. A. (2020). Prevention and management of childhood obesity and its psychological and health comorbidities. Annual Review of Clinical Psychology, 16(1), 351-378. doi: 10.1146/annurev-clinpsy-100219-060201.
Soares, M. J., de Souza Figueira, M., Sampaio, G. R., Soares-Freitas, R. A. M., da Costa Pinaffi-Langley, A. C., & da Silva Torres, E. A. F. (2022). Coffee simulated inhibition of pancreatic lipase and antioxidant activities: Effect of milk and decaffeination. Food Research International, 160, 111730.
Sosnowska, D., Kajszczak, D., & Podsedek, A. (2022). The effect of different growth stages of black chokeberry fruits on phytonutrients, anti-lipase activity, and antioxidant capacity. Molecules, 27(22), 8031. https://doi.org/10.3390/molecules27228031
Sosnowska, D., Podsedek, A., & Kucharska, A. Z. (2022). Proanthocyanidins as the main pancreatic lipase inhibitors in chokeberry fruits. Food & Function, 13(10), 5616-5625.
Su, H., Ruan, Y. T., Li, Y., Chen, J. G., Yin, Z. P., & Zhang, Q. F. (2020). In vitro and in vivo inhibitory activity of taxifolin on three digestive enzymes. International Journal of Biological Macromolecules, 150, 31-37.
Sukhdev, S., & Singh, K. S. (2013). Therapeutic role of phytomedicines on obesity: the importance of herbal pancreatic lipase inhibitors. Int Res J Med Sci, 1(9), 15-26.
Sun, X., Zhang, K., Ji, X., Wang, Y., Jeffrey, Z., Tong, Y., ... & Wang, Z. (2012). Screening of pancreatic lipase and alpha-glucosidase inhibitors from Chinese dietary herbs. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica, 37(9), 1319-1323.
Tan, K. C. B. (2004). Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. The lancet.
Tang, G. Y., Meng, X., Gan, R. Y., Zhao, C. N., Liu, Q., Feng, Y. B., ... & Li, H. B. (2019). Health functions and related molecular mechanisms of tea components: An update review. International Journal of Molecular Sciences, 20(24), 6196. doi: 10.3390/ijms20246196.
Thomas, N., Holm, R., Rades, T., & Müllertz, A. (2012). Characterising lipid lipolysis and its implication in lipid-based formulation development. The AAPS Journal, 14, 860-871. doi: 10.1208/s12248-012-9398-6.
Toromanyan, E., Aslanyan, G., Amroyan, E., Gabrielyan, E., & Panossian, A. (2007). Efficacy of Slim339® in reducing body weight of overweight and obese human subjects. Phytotherapy Research, 21(12), 1177-1181.
Tsujita, T., Sumiyoshi, M., Han, L. K., Fujiwara, T., Tsujita, J., & Okuda, H. (2003). Inhibition of lipase activities by citrus pectin. Journal of Nutritional Science and Vitaminology, 49(5), 340-345. doi: 10.3177/jnsv.49.340. PMID: 14703309.
Tung, B. T., Nham, D. T., Hai, N. T., & Thu, D. K. (2019). Curcuma longa, the polyphenolic curcumin compound and pharmacological effects on liver. Dietary Interventions in Liver Disease, 125-134.
Tylewicz, U., Nowacka, M., Martín-García, B., Wiktor, A., & Caravaca, A. M. G. (2018). Target sources of polyphenols in different food products and their processing by-products. In Polyphenols: Properties, Recovery, and Applications (pp. 135-175). Woodhead Publishing.
Uchiyama, S., Taniguchi, Y., Saka, A., Yoshida, A., & Yajima, H. (2011). Prevention of diet-induced obesity by dietary black tea polyphenols extract in vitro and in vivo. Nutrition, 27(3), 287-292.
Uzun, Y., Dalar, A., & Konczak, I. (2017). Sempervivum davisii: phytochemical composition, antioxidant and lipase-inhibitory activities. Pharmaceutical Biology, 55(1), 532-540.
Verma, R. S., Padalia, R. C., & Chauhan, A. (2012). Volatile constituents of Origanum vulgare L., thymol chemotype: variability in North India during plant ontogeny. Natural Product Research, 26(14), 1358-1362.
Vijayaraj, P., Nakagawa, H., & Yamaki, K. (2019). Cyanidin and cyanidin-3-glucoside derived from Vigna unguiculata act as noncompetitive inhibitors of pancreatic lipase. Journal of Food Biochemistry, 43(3), e12774.
Vincent, L., Leedy, D., Masri, S. C., & Cheng, R. K. (2019). Cardiovascular disease and cancer: is there increasing overlap?. Current Oncology Reports, 21, 1-13. doi: 10.1007/s11912-019-0796-0.
Weibel, E. K., Hadvary, P., Hochuli, E., Kupfer, E., & Lengsfeld, H. (1987). Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini I. Producing organism, fermentation, isolation and biological activity. The Journal of Antibiotics, 40(8), 1081-1085.
Wikiera, A., Mika, M., & Zyla, K. (2012). Methylxanthine drugs are human pancreatic lipase inhibitors. Polish Journal of Food and Nutrition Sciences, 62(2).
DOI: https://doi.org/10.2478/v10222-011-0043-3
Wojdylo, A., Oszmianski, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940-949.
Yuda, N., Tanaka, M., Suzuki, M., Asano, Y., Ochi, H., & Iwatsuki, K. (2012). Polyphenols extracted from black tea (Camellia sinensis) residue by hot-compressed water and their inhibitory effect on pancreatic lipase in vitro. Journal of Food Science, 77(12), H254-H261. doi: 10.1111/j.1750-3841.2012.02967.x.
Zeng, S. L., Li, S. Z., Wei, M. Y., Chen, B. Z., Li, P., Zheng, G. D., & Liu, E. H. (2018). Evaluation of anti-lipase activity and bioactive flavonoids in the Citri Reticulatae Pericarpium from different harvest time. Phytomedicine, 43, 103-109.
Zhang, J., Kang, M. J., Kim, M. J., Kim, M. E., Song, J. H., Lee, Y. M., & Kim, J. I. (2008). Pancreatic lipase inhibitory activity of taraxacum officinale in vitro and in vivo. Nutrition Research and Practice, 2(4), 200-203.
Zhang, X., Huang, Y., Huang, S., Xie, W., Huang, W., Chen, Y., ... & Liu, X. (2024). Antisolvent precipitation for the synergistic preparation of ultrafine particles of nobiletin under ultrasonication-homogenization and evaluation of the inhibitory effects of α-glucosidase and porcine pancreatic lipase in vitro. Ultrasonics Sonochemistry, 105, 106865.
Zheng, C. D., Duan, Y. Q., Gao, J. M., & Ruan, Z. G. (2010). Screening for anti-lipase properties of 37 traditional Chinese medicinal herbs. Journal of the Chinese Medical Association, 73(6), 319-324.
Zhou, J. F., Wang, W. J., Yin, Z. P., Zheng, G. D., Chen, J. G., Li, J. E., ... & Zhang, Q. F. (2021). Quercetin is a promising pancreatic lipase inhibitor in reducing fat absorption in vivo. Food Bioscience, 43, 101248.
View Dimensions
View Altmetric
Save
Citation
View
Share