Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Artificial Intelligence in Breast Cancer Screening in Inducing Diagnostic Accuracy with Early Detection

Amiya Kumar Prusty1, Prasanna Parida2, Pradip Kumar Prusty3, Suryakanta Swain4, Bikash Ranjan Jena2*, Ram Naresh Yadav5, Sanjoy Das6, Bhisma Narayan Ratha7

+ Author Affiliations

Journal of Angiotherapy 8(7) 1-8 https://doi.org/10.25163/angiotherapy.879806

Submitted: 18 May 2024  Revised: 22 July 2024  Published: 26 July 2024 

This review discusses the AI to improve diagnostic accuracy in breast cancer screening, potentially reducing false positives and negatives and improving patient outcomes.

Abstract


Background: The integration of artificial intelligence (AI) into breast cancer screening has shown promise in overcoming these limitations, potentially improving diagnostic accuracy and patient outcomes. Methods: This study reviews the current imaging modalities for breast cancer detection, including mammography, magnetic resonance imaging (MRI), dynamic contrast-enhanced MRI (DCE-MRI), magnetic resonance elastography (MRE), magnetic resonance spectroscopy (MRS), positron emission tomography-computed tomography (PET-CT), ultrasound, breast-specific gamma imaging (BSGI), and molecular image-guided sentinel node biopsy. It also explores the role of AI in enhancing diagnostic precision through advanced computational techniques, such as deep learning and machine learning models, focusing on object detection, segmentation, and tumor classification. Results: Mammography remains the gold standard for breast cancer detection but poses risks, such as overdiagnosis and radiation exposure. Alternative methods, like MRI, DCE-MRI, and BSGI, offer advantages in specific scenarios but also have limitations, such as low specificity and higher costs. AI systems have demonstrated superior performance in breast cancer prediction compared to human experts by reducing false-positive and false-negative rates. AI integration enhances screening programs by improving the detection accuracy of imaging biomarkers and facilitating automated interpretation. Conclusion: The incorporation of AI in breast cancer screening represents a significant advancement in early detection and diagnosis, improving treatment outcomes.

Keywords: Breast cancer screening, Artificial intelligence (AI), Imaging modalities, Diagnostic accuracy, Machine learning

References


Abel, F., Landsmann, A., Hejduk, P., Ruppert, C., Borkowski, K., Ciritsis, A., Rossi, C., & Boss, A. (2022). Detecting abnormal axillary lymph nodes on mammograms using a deep convolutional neural network. Diagnostics, 12, 1347. https://doi.org/10.3390/diagnostics12061347

Adler-Milstein, J., Chen, J. H., & Dhaliwal, G. (2021). Next-generation artificial intelligence for diagnosis: From predicting diagnostic labels to “wayfinding.” JAMA, 326(24), 2467–2468.

Altameem, A., Mahanty, C., Poonia, R. C., Saudagar, A. K. J., & Kumar, R. (2022). Breast cancer detection in mammography images using deep convolutional neural networks and fuzzy ensemble modeling techniques. Diagnostics, 12, 1812. https://doi.org/10.3390/diagnostics12081812

Amornsiripanitch, N., Bickelhaupt, S., Shin, H. J., Dang, M., Rahbar, H., & Pinker, K., et al. (2019). Diffusion-weighted MRI for unenhanced breast cancer screening. Radiology, 293(3), 504–520. https://doi.org/10.1148/radiol.2019182789

Arya, B., Gonsalves, A., & Menon, J. U. (2019). Current state of breast cancer diagnosis, treatment, and theranostics. Pharmaceutics, 13(5), 723. https://doi.org/10.3390/pharmaceutics13050723

Basilion, J. P. (2001). Current and future technologies for breast cancer imaging. Breast Cancer Research, 3(1), 14–16. https://doi.org/10.1186/bcr264

Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V., & Madabhushi, A. (2019). Artificial intelligence in digital pathology – New tools for diagnosis and precision oncology. Nature Reviews Clinical Oncology, 16(11), 703–715. https://doi.org/10.1038/s41571-019-0252-y

Bhan, A. (2013). Comparative analysis of preprocessing techniques for mammogram image enhancement. In Proceedings of the INCON VIII 2013: International Conference on Ongoing Research in Management and IT, Pune, India, January 11–13, 2013.

Bhinder, B., Gilvary, C., Madhukar, N. S., & Elemento, O. (2021). Artificial intelligence in cancer research and precision medicine. Cancer Discovery, 11(4), 900–915. https://doi.org/10.1158/2159-8290.CD-21-0090

Bolan, P. J., Meisamy, S., Baker, E. H., Lin, J., Emory, T., Nelson, M., et al. (2003). In vivo quantification of choline compounds in the breast with 1H MR spectroscopy. Magnetic Resonance in Medicine, 50(6), 1134–1143. https://doi.org/10.1002/mrm.10654

Candelaria, R., & Fornage, B. D. (2011). Second-look US examination of MR-detected breast lesions. Journal of Clinical Ultrasound, 39(3), 115–121. https://doi.org/10.1002/jcu.20784

Chen, S. L., Iddings, D. M., Scheri, R. P., & Bilchik, A. J. (2006). Lymphatic mapping and sentinel node analysis: Current concepts and applications. CA: A Cancer Journal for Clinicians, 56(5), 292–309; quiz 316. https://doi.org/10.3322/canjclin.56.5.292

Choi, E. J., Choi, H., Choi, S. A., & Youk, J. H. (2016). Dynamic contrast-enhanced breast magnetic resonance imaging for the prediction of early and late recurrences in breast cancer. Medicine, 95(48), e5330. https://doi.org/10.1097/MD.0000000000005330

Coleman, C. (2017). Early detection and screening for breast cancer. Seminars in Oncology Nursing, 33(2), 141–155. https://doi.org/10.1016/j.soncn.2017.02.009

Coleman, C. (2017). Early detection and screening for breast cancer. Seminars in Oncology Nursing, 33(2), 141–155. https://doi.org/10.1016/j.soncn.2017.02.009

Cox, C. E., Kiluk, J. V., Riker, A. I., Cox, J. M., Allred, N., Ramos, D. C., et al. (2008). Significance of sentinel lymph node micrometastases in human breast cancer. Journal of the American College of Surgeons, 206(2), 261–268. https://doi.org/10.1016/j.jamcollsurg.2007.08.024

Cruz-Bernal, A., Flores-Barranco, M. M., Almanza-Ojeda, D. L., Ledesma, S., & Ibarra-Manzano, M. A. (2018). Analysis of the cluster prominence feature for detecting calcifications in mammograms. Journal of Healthcare Engineering, 2849567. https://doi.org/10.1155/2018/2849567

Dileep, G., & Gyani, S. G. (2022). Artificial intelligence in breast cancer screening and diagnosis. Cureus, 14(10), e30318. https://doi.org/10.7759/cureus.30318

Erickson, B. J., Korfiatis, P., Akkus, Z., & Kline, T. L. (2017). Machine learning for medical imaging. Radiographics, 37(2), 505–515. https://doi.org/10.1148/rg.2017160130

Flavell, R. R., Naeger, D. M., Aparici, C. M., Hawkins, R. A., Pampaloni, M. H., & Behr, S. C. (2016). Malignancies with low fluorodeoxyglucose uptake at PET/CT: Pitfalls and prognostic importance: Resident and fellow education feature. RadioGraphics, 36(1), 293–294. https://doi.org/10.1148/rg.2016150073

Gillman, J., Toth, H. K., & Moy, L. (2014). The role of dynamic contrast-enhanced screening breast MRI in populations at increased risk for breast cancer. Women's Health (London, England), 10(6), 609–622. https://doi.org/10.2217/whe.14.61

Glicksberg, B. S., Oskotsky, B., Thangaraj, P. M., Giangreco, N., Badgeley, M. A., Johnson, K. W., et al. (2019). Patient Explore R: An extensible application for dynamic visualization of patient clinical history from electronic health records in the OMOP common data model. Bioinformatics, 35(21), 4515–4518. https://doi.org/10.1093/bioinformatics/btz409

Gong, Z., & Williams, M. B. (2015). Comparison of breast specific gamma imaging and molecular breast tomosynthesis in breast cancer detection: Evaluation in phantoms. Medical Physics, 42(7), 4250–4259. https://doi.org/10.1118/1.4922398

Guo, X., Liu, Z., Sun, C., Zhang, L., Wang, Y., Li, Z., Shi, J., Wu, T., Cui, H., Zhang, J., et al. (2020). Deep learning radiomics of ultrasonography: Identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer. EBioMedicine, 60, 103018. https://doi.org/10.1016/j.ebiom.2020.103018

Ha, R., Chang, P., Karcich, J., Mutasa, S., Fardanesh, R., Wynn, R. T., Liu, M. Z., & Jambawalikar, S. (2018). Axillary lymph node evaluation utilizing convolutional neural networks using MRI dataset. Journal of Digital Imaging, 31, 851–856. https://doi.org/10.1007/s10278-018-0086-7

Hardy, M., & Harvey, H. (2020). Artificial intelligence in diagnostic imaging: Impact on the radiography profession. British Journal of Radiology, 93, 20190840. https://doi.org/10.1259/bjr.20190840

Hawley, J. R., Kalra, P., Mo, X., Raterman, B., Yee, L. D., & Kolipaka, A. (2017). Quantification of breast stiffness using MR elastography at 3 Tesla with a soft sternal driver: A reproducibility study. Journal of Magnetic Resonance Imaging, 45(5), 1379–1384. https://doi.org/10.1002/jmri.25511

Heywang-Köbrunner, S. H., Hacker, A., & Sedlacek, S. (2011). Advantages and disadvantages of mammography screening. Breast Care (Basel), 6(3), 199–207. https://doi.org/10.1159/000329005

Hmida, M., Hamrouni, K., Solaiman, B., & Boussetta, S. (2018). Mammographic mass segmentation using fuzzy contours. Computers in Biology and Medicine, 164, 131–142. https://doi.org/10.1016/j.cmpb.2018.07.005

Jethava, A., Ali, S., Wakefield, D., Crowell, R., Sporn, J., & Vrendenburgh, J. (2015). Diagnostic accuracy of MRI in predicting breast tumor size: Comparative analysis of MRI vs. histopathological assessed breast tumor size. Connecticut Medicine, 79(5), 261–267.

Kadoya, T., Aogi, K., Kiyoto, S., Masumoto, N., Sugawara, Y., & Okada, M. (2013). Role of maximum standardized uptake value in fluorodeoxyglucose positron emission tomography/computed tomography predicts malignancy grade and prognosis of operable breast cancer: A multi-institute study. Breast Cancer Research and Treatment, 141(2), 269–275. https://doi.org/10.1007/s10549-013-2687-7

Lorenzen, J., Sinkus, R., Lorenzen, M., Dargatz, M., Leussler, C., Röschmann, P., & Adam, G. (2002). MR elastography of the breast: Preliminary clinical results. RoFo Fortschritte auf dem Gebiet der Röntgenstrahlen und der Bildgebenden Verfahren, 174, 830–834.

Narayanan, D., Madsen, K. S., Kalinyak, J. E., & Berg, W. A. (2011). Interpretation of positron emission mammography and MRI by experienced breast imaging radiologists: Performance and observer reproducibility. AJR American Journal of Roentgenology, 196(4), 971–981. https://doi.org/10.2214/AJR.10.5081

Niazi, M. K. K., Parwani, A. V., & Gurcan, M. N. (2019). Digital pathology and artificial intelligence. The Lancet Oncology, 20(5), e253–e261. https://doi.org/10.1016/S1470-2045(19)30154-8

Painuli, D., Bhardwaj, S., & Köse, U. (2022). Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review. Computers in Biology and Medicine, 146, 10558. https://doi.org/10.1016/j.compbiomed.2022.10558

Patel, B. K., Samreen, N., Zhou, Y., Chen, J., Brandt, K., Ehman, R., et al. (2021). MR elastography of the breast: Evolution of technique, case examples, and future directions. Clinical Breast Cancer, 21(1), e102–e111. https://doi.org/10.1016/j.clbc.2020.08.005

Rahbar, H., & Partridge, S. C. (2016). Multiparametric MR imaging of breast cancer. Magnetic Resonance Imaging Clinics of North America, 24(1), 223–238. https://doi.org/10.1016/j.mric.2015.08.012

Ren, T., Cattell, R., Duanmu, H., Huang, P., Li, H., Vanguri, R., Liu, M. Z., Jambawalikar, S., Ha, R., Wang, F., et al. (2020). Convolutional neural network detection of axillary lymph node metastasis using standard clinical breast MRI. Clinical Breast Cancer, 20, e301–e308. https://doi.org/10.1016/j.clbc.2019.11.009

S, P., N, K. V., & S, S. (2019). Breast cancer detection using crow search optimization based intuitionistic fuzzy clustering with neighborhood attraction. Asian Pacific Journal of Cancer Prevention, 20(1), 157–165. https://doi.org/10.31557/APJCP.2019.20.1.157

Sobhani, F., Robinson, R., Hamidinekoo, A., Roxanis, I., Somaiah, N., & Yuan, Y. (2021). Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1875(2), 188520. https://doi.org/10.1016/j.bb

Song, B. I. (2021). A machine learning-based radiomics model for the prediction of axillary lymph-node metastasis in breast cancer. Breast Cancer, 28, 664–671. https://doi.org/10.1007/s12282-020-01202-z

Subramanian, M., Wojtusciszyn, A., Favre, L., Boughorbel, S., Shan, J., & Letaief, K. B. (2020). Precision medicine in the era of artificial intelligence: Implications in chronic disease management. Journal of Translational Medicine, 18(1), 472. https://doi.org/10.1186/s12967-020-02658-5

Sundaram, K. M., Sasikala, D., & Rani, P. A. (2014). On preprocessing a mammogram image using adaptive median filter. International Journal of Innovative Research in Science, Engineering and Technology, 3, 10333–10337.

Surti, S. (2013). Radionuclide methods and instrumentation for breast cancer detection and diagnosis. Seminars in Nuclear Medicine, 43(4), 271–280. https://doi.org/10.1053/j.semnuclmed.2013.03.003

Tagliafico, A. S., Piana, M., Schenone, D., Lai, R., Massone, A. M., & Houssami, N. (2020). Overview of radiomics in breast cancer diagnosis and prognostication. Breast, 49, 74–80. https://doi.org/10.1016/j.breast.2019.10.018

Tahmasebi, A., Qu, E., Sevrukov, A., Liu, J.-B., Wang, S., Lyshchik, A., Yu, J., & Eisenbrey, J. R. (2021). Assessment of axillary lymph nodes for metastasis on ultrasound using artificial intelligence. Ultrasonography, 43, 329–336. https://doi.org/10.1177/01617346211035315

Tizhoosh, H. R., & Pantanowitz, L. (2018). Artificial intelligence and digital pathology: Challenges and opportunities. Journal of Pathology Informatics, 9, 38. https://doi.org/10.4103/jpi.jpi_53_18

Tran, W. T., Sadeghi-Naini, A., Lu, F. I., Gandhi, S., Meti, N., Brackstone, M., et al. (2021). Computational radiology in breast cancer screening and diagnosis using artificial intelligence. Canadian Association of Radiologists Journal, 72(1), 98–108. https://doi.org/10.1177/0846537120949974

Van Timmeren, J. E., Cester, D., Tanadini-Lang, S., Alkadhi, H., & Baessler, B. (2020). Radiomics in medical imaging—“How-to” guide and critical reflection. Insights into Imaging, 11(1), 91. https://doi.org/10.1186/s13244-020-00887-2

Vrdoljak, J., Krešo, A., Kumric, M., Martinovic, D., Cvitkovic, I., Grahovac, M., Vickov, J., Bukic, J., & Božic, J. (2023). The role of AI in breast cancer lymph node classification: A comprehensive review. Cancers (Basel), 15(8), 2400. https://doi.org/10.3390/cancers15082400

Xu, Z., Wang, X., Zeng, S., Ren, X., Yan, Y., & Gong, Z. (2021). Applying artificial intelligence for cancer immunotherapy. Acta Pharmaceutica Sinica B, 11(11), 3393–3405. https://doi.org/10.1016/j.apsb.2021.02.007

Yang, X., Wu, L., Ye, W., Zhao, K., Wang, Y., Liu, W., Li, J., Li, H., Liu, Z., & Liang, C. (2020). Deep learning signature based on staging CT for preoperative prediction of sentinel lymph node metastasis in breast cancer. Academic Radiology, 27, 1226–1233. https://doi.org/10.1016/j.acra.2019.11.007

Yuan, J., Hu, Z., Mahal, B. A., Zhao, S. D., Kensler, K. H., Pi, J., et al. (2018). Integrated analysis of genetic ancestry and genomic alterations across cancers. Cancer Cell, 34(4), 549–560.e9. https://doi.org/10.1016/j.ccell.2018.08.019

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
407
View
0
Share