Microarray Analysis of Tumor Suppressor Proteins p53 and p63: Their Role in Tumor Cell Dynamics
Oluwafemi Shittu Bakare 1*, Akinrinmisi Michael Ayomide 1, Olajuyigbe Olakunle Julius 1
Journal of Angiotherapy 8(7) 1-14 https://doi.org/10.25163/angiotherapy.879776
Submitted: 13 May 2024 Revised: 10 July 2024 Published: 11 July 2024
Microarray analysis advances cancer research by enabling high-throughput gene expression profiling, uncovering biomarkers, and guiding personalized medicine.
Abstract
Background: Microarray technology has become essential in cancer research, providing insights into gene expression patterns and regulatory networks governed by key transcription factors. This review focuses on using microarray technology to elucidate genes regulated by tumor suppressor proteins p53 and p63. These proteins maintain genomic stability, regulate the cell cycle, and induce programmed cell death. Dysregulation of p53 and p63 is common in various cancers, highlighting their significance in cancer biology. Methods: Microarray technology enables high-throughput analysis of thousands of genes simultaneously. Researchers compare gene expression profiles in cancer cells and tissues with functional p53 and p63 against those with impaired function. This comparative analysis identifies numerous downstream target genes and pathways influenced by these transcription factors. Results: Microarray studies have revealed a wide array of genes regulated by p53 and p63, involved in DNA repair, apoptosis, cell cycle control, and epithelial differentiation. These findings enhance our understanding of molecular mechanisms driving cancer initiation, progression, and therapeutic resistance. Additionally, microarray technology enables the stratification of cancer subtypes based on distinct gene expression signatures associated with p53 and p63 status, offering insights into patient prognosis, treatment responses, and personalized therapeutic strategies. Conclusion: Microarray technology has significantly advanced our knowledge of gene regulatory networks orchestrated by p53 and p63 in cancer. Despite limitations like data interpretation and cross-hybridization, advancements in bioinformatics and complementary technologies are improving study accuracy and reliability, promising better cancer diagnostics, prognostics, and targeted therapies.
Keywords: Cell cycle, Genomics, Transcription factors, Epithelial differentiation, Gene expression.
References
Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., and Botstein, D. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403(6769), 503-511.
Berkers, C. R., Maddocks, O. D., Cheung, E. C., Mor, I., Vousden, K. H., and Athineos, D. (2013). Metabolic regulation by p53 family members. Cell Metabolism, 18(5), 617-633.
Bieging K.T., Mello S.S., Attardi L.D. (2014). Unraveling mechanisms of p53-mediated tumor suppression.
Nature Reviews Cancer, 14(5), 359-370.
Bild A.H., Yao G., Chang J.T., Wang Q., Potti A., Chasse D., Joshi M.B., Harpole D., Lancaster J.M., Berchuck A., Olson Jr. J.A., Marks J.R., Dressman H.K., West M., Nevins J.R., (2006). Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature, 439(7074), 353-357.
Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. (2003). A comparison of normalization methods for high-density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185-193.
Brady, C. A., Jiang, D., Mello, S. S., Johnson, T. M., Jarvis, L. A., Kozak, M. M., and Vangala, J. R. (2011). Distinct p53 transcriptional programs dictate acute DNA damage responses and tumor suppression. Cell, 145(4), 571-583.
Brambilla E., Travis W.D., Colby T.V., Corrin B., Shimosato Y. (2001). The new World Health Organization classification of lung tumors. European Respiratory Journal, 18(6), 1059-1068.
Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., and Croce, C. M. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 99(24), 15524-15529.
Cancer Genome Atlas Research Network. (2013). The Cancer Genome Atlas Pan-Cancer analysis project.
Nature Genetics, 45(10), 1113-1120.
Candi, E., Dinsdale, D., Rufini, A., Salomoni, P., Knight, R. A., Mueller, M., and Melino, G. (2007). TAp63 and DeltaNp63 in cancer and epidermal development. Cell Cycle, 6(3), 274-285.
Cawley, S., Bekiranov, S., Ng, H. H., Kapranov, P., Sekinger, E. A., Kampa, D., and Gingeras, T. R. (2004). Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 116(4), 499-509.
Chang J.C., Wooten E.C., Tsimelzon A., Hilsenbeck S.G., Gutierrez M.C., Elledge R., Mohsin S., Osborne C.K., Chamness G.C., Allred D.C., O'Connell P. (2003). Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. The Lancet, 362(9381), 362-369.
Cui X., Churchill G.A. (2003). Statistical tests for differential expression in cDNA microarray experiments.
Genome Biology, 4(4), 210.
Dai, M., Wang, P., Boyd, A. D., Kostov, G., Athey, B., Jones, E. G., and Luo, H. (2005). Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Research, 33(20), e175.
Ein-Dor L., Kela I., Getz G., Givol D., Domany E. (2006). Outcome signature genes in breast cancer: Is there a unique set? Bioinformatics, 22(2), 171-178.
Fischer, M. (2017). Census and evaluation of p53 target genes. Oncogene, 36(28), 3943-3956.
Flores, E. R., Sengupta, S., Miller, J. B., Newman, J. J., Bronson, R., Crowley, D., and Jacks, T. (2002). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell, 1(1), 91-99.
Flores, E. R., Sengupta, S., Miller, J. B., Newman, J. J., Bronson, R., Crowley, D., and Jacks, T. (2002). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell, 1(1), 91-99.
Flores, E. R., Sengupta, S., Miller, J. B., Newman, J. J., Bronson, R., Crowley, D., and Jacks, T. (2002). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell, 2(4), 363-373.
Gebel, J., Luh, L. M., Coutandin, D., Osterburg, C., Löhr, F., Schäfer, B., and Dötsch, V. (2020). Mechanism of TAp73 inhibition by ΔNp63 and structural basis of p63/p73 hetero-tetramerization. Cell Death and Differentiation, 27(5), 1604-1619.
Geschwind, D. H., and Konopka, G. (2009). Neuroscience in the era of functional genomics and systems biology. Nature, 461(7266), 908-915.
Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., and Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286(5439), 531-537.
Gorski, J. J., James, C. D., and Wahl, G. M. (2003). A high-throughput matrix-based screen for genomewide RNAi identifies susceptibility genes to herpes simplex virus. Genome Research, 13(10), 1974-1984.
He, Z., Gentry, T. J., Schadt, C. W., Wu, L., Liebich, J., Chong, S. C., and Zhou, J. (2010). GeoChip: a comprehensive microarray for investigating biogeochemical, ecological, and environmental processes. The ISME Journal, 1(1), 67-77.
Hibi K., Trink B., Patturajan M., Westra W.H., Caballero O.L., Hill D.E., Ratovitski E.A., Jen J., Sidransky
D. (2000). AIS is an oncogene amplified in squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5462-5467.
Hirschhorn, J. N., and Daly, M. J. (2005). Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics, 6(2), 95-108.
Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44-57.
Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R., Armour, C. D., and Friend, S. H. (2000). Functional discovery via a compendium of expression profiles. Cell, 102(1), 109-126.
Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., and Croce, C. M. (2016). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65(16), 7065- 7070.
Irizarry, R. A., Warren, D., Spencer, F., Kim, I. F., Biswal, S., Frank, B. C., and Rifkin, S. A. (2003). Multiple- laboratory comparisons of microarray platforms. Nature Methods, 2(5), 345-350.
Joerger, A. C., and Fersht, A. R. (2016). The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annual Review of Biochemistry, 85(1), 375–404.
Johnson, D. S., Mortazavi, A., Myers, R. M., and Wold, B. (2007). Genome-wide mapping of in vivo protein- DNA interactions. Science, 316(5830), 1497-1502.
Kadota K., Nakai Y., Shimizu K. (2003). A weighted average difference method for detecting differentially expressed genes from microarray data. Algorithms for Molecular Biology, 19(1), 8.
Kandoth C., McLellan M.D., Vandin F., Ye K., Niu B., Lu C., Xie M., Zhang Q., McMichael J.F., Wyczalkowski M.A., Leiserson M.D., Miller C.A., Welch J.S., Walter M.J., Wendl M.C., Ley T.J., Wilson R.K., Raphael B.J., Ding L. (2013). Mutational landscape and significance across 12 major cancer types. Nature, 502(7471), 333-339.
Kerr M.K., Churchill G.A. (2001). Statistical design and the analysis of gene expression microarray data.
Genetical Research, 77(2), 123-128.
Kosmidou, V., Katseli, V., Balatsos, N. A., Stathopoulos, C., Tzavaras, T., and Kyriakidis, D. A. (2019). p53 enhances ribosomal RNA transcription and recruits RNA Polymerase I to target promoters. Oncotarget, 10(45), 4660-4670
Koster, M. I., Kim, S., Mills, A. A., DeMayo, F. J., and Roop, D. R. (2007). p63 is the molecular switch for initiation of an epithelial stratification program. Genes and Development, 18(2), 126-131.
Kruse, J. P., and Gu, W. (2009). Modes of p53 regulation. Cell, 137(4), 609-622.
Lane, D. P., and Levine, A. J. (2010). p53 Research: the past thirty years and the next thirty years. Cold Spring Harbor Perspectives in Biology, 2(12), a000893.
Lee H.K., Hsu A.K., Sajdak J., Qin J., Pavlidis P. (2004). Coexpression analysis of human genes across many microarray data sets. Genome Research, 14(6), 1085-1094.
Leek J.T., Scharpf R.B., Bravo H.C., Simcha D., Langmead B., Johnson W.E., Geman D., Baggerly K., Irizarry R.A. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics, 11(10), 733-739.
Levin J.Z., Yassour M., Adiconis X., Nusbaum C., Thompson D.A., Friedman N., Gnirke A., Regev A. (2016). Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nature Methods, 7(9), 709-715.
Lockhart, D. J., Dong, H., Byrne, M. C., Follette, M. T., Gallo, M. V., Chee, M. S., and Davis, R. W. (1996). Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology, 14(13), 1675-1680.
Luo J., Schumacher M., Scherer A., Sanoudou D., Megherbi D., Davison T., Shi T., Tong W., Shi L., Hong H., Zhao C., Elloumi F., Shi W., Thomas R., Lin S., Tillinghast G., Liu G., Zhou Y., Herman D., Li Y., Deng Y., Fang H., Bushel P., Woods M., Zhang J. (2009). A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. The Pharmacogenomics Journal, 10(4), 278-291.
Melino, G., Memmi, E. M., Pelicci, P. G., and Bernassola, F. (2015). Maintaining epithelial stemness with p63. Science Signaling, 8(398), re9.
Menendez, D., Inga, A., and Resnick, M. A. (2011). The expanding universe of p53 targets. Nature Reviews Cancer, 9(10), 724-737.
Muller P.A., Caswell P.T., Doyle B., Iwanicki M.P., Tan E.H., Karim S., Lukashchuk N., Gillespie D.A., Ludwig R.L., Gosselin P., Cromer A., Brugge J.S., Sansom O.J., Norman J.C., Vousden K.H. (2009). Mutant p53 drives invasion by promoting integrin recycling. Cell, 139(7), 1327-1341.
Olivier, M., Hollstein, M., and Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor Perspectives in Biology, 2(1), a001008.
Pan Q., Shai O., Lee L.J., Frey B.J., Blencowe B.J. (2008). Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics, 40(12), 1413-1415.
Perou C.M., Sørlie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Rees C.A., Pollack J.R., Ross D.T., Johnsen H., Akslen L.A., Fluge Ø., Pergamenschikov A., Williams C., Zhu S.X., Lønning P.E., Børresen-Dale A.L., Brown P.O., Botstein D. (2000). Molecular portraits of human breast tumors. Nature, 406(6797), 747-752.
Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., and Brown, P. O. (2000).
Molecular portraits of human breast tumors. Nature, 406(6797), 747-752.
Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., and Albertson, D. (1998). High-resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics, 20(2), 207-211.
Quackenbush, J. (2002). Microarray data normalization and transformation. Nature Genetics, 32(Supp1), 496- 501.
Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I., and Myers, R. M. (2000). Genome-wide location and function of DNA binding proteins. Science, 290(5500), 2306-2309.
Riley T., Sontag E., Chen P., Levine A. (2008). Transcriptional control of human p53-regulated genes. Nature Reviews Molecular Cell Biology, 9(5), 402-412.
Rocco J.W., Leong C.O., Kuperwasser N., DeYoung M.P., Ellisen L.W. (2006). p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell, 9(1), 45-56.
Sakamuro, D., Sabbatini, P., White, E., and Prendergast, G. C. (1995). The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene, 11(12), 2379-2386.
Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270(5235), 467-470.
Senoo, M., Pinto, F., Crum, C. P., and McKeon, F. (2007). p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell, 129(3), 523-536.
Shi, L., Campbell, G., Jones, W. D., Campagne, F., Wen, Z., Walker, S. J., and Tong, W. (2020). The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature Biotechnology, 28(8), 827-838.
Slonim, D. K. (2002). From patterns to pathways: gene expression data analysis comes of age. Nature Genetics, 32(Supp1), 502-508.
Smith, A. M., Heller, M. J., Knoll, W., and Dorfman, K. D. (2008). Microarrays: Biophysical tools for unraveling the functional genome. Current Opinion in Chemical Biology, 12(5), 476-484.
Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3(1), 1-25.
Su, X., and Flores, E. R. (2013). p63 steps into the limelight: crucial roles in the suppression of tumorigenesis and metastasis. Nature Reviews Cancer, 13(2), 136-143.
Su, X., Chakravarti, D., Cho, M. S., Liu, L., Gi, Y. J., Lin, Y. L., and Ellisen, L. W. (2009). TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature, 467(7318), 986-990.
Tabaries, S., McNulty, A., Ouellet, V., Annis, M. G., Dessureault, M., Vinette, M., and Royal, I. (2021). Afadin cooperates with Claudin-2 to promote breast cancer metastasis. Genes, Chromosomes and Cancer, 60(8), 558-571.
van Gelder, R. N., von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D., and Eberwine, J. H. (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proceedings of the National Academy of Sciences, 87(5), 1663-1667.
van 't Veer L.J., Dai H., van de Vijver M.J., He Y.D., Hart A.A., Mao M., Peterse H.L., van der Kooy K., Marton M.J., Witteveen A.T., Schreiber G.J., Kerkhoven R.M., Roberts C., Linsley P.S., Bernards R., Friend S.H. (2002). Gene expression profiling predicts the clinical outcome of breast cancer. Nature, 415(6871), 530-536.
Vousden, K. H., and Prives, C. (2009). Blinded by the Light: The Growing Complexity of p53. Cell, 137(3), 413-431.
Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57-63.
Wilhelm, B. T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., and Bähler, J. (2010). Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature, 464(7289), 250-255.
Xu, H., Wang, X., Liu, D. X., and Moro, A. (2014). Understanding the molecular mechanisms of the liver's evolution, structure, and function through genomics: Willkommen, bienvenue and welcome to RNAseq! Integrative and Comparative Biology, 54(2), 328-341.
Yang, A., Kaghad, M., Wang, Y., Gillett, E., Fleming, M. D., Dotsch, V., and McKeon, F. (1998). p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Molecular Cell, 2(3), 305-316.
Yang, A., Schweitzer, R., Sun, D., Kaghad, M., Walker, N., Bronson, R. T., and McKeon, F. (1999). p63 is essential for regenerative proliferation in limb, craniofacial, and epithelial development. Nature, 398(6729), 714-718.
Yoshihara K., Shahmoradgoli M., Martínez E., Vegesna R., Kim H., Torres-Garcia W., Treviño V., Shen H., Laird P.W., Levine D.A., Carter S.L., Getz G., Stemke-Hale K., Mills G.B., Verhaak R.G. (2013). Inferring tumor purity and stromal and immune cell admixture from expression data. Nature Communications, 4, 2612.
Zhang, B., Horvath, S., and Zhang, S. (2013). A general framework for weighted gene co-expression network analysis. Statistical applications in genetics and molecular biology, 4(1).
View Dimensions
View Altmetric
Save
Citation
View
Share