Chronic Toxic Effects of Chocolate Brown HT Dye on Hepatorenal Functions In Vivo
T M Tawabul Islam 1, Abul Kashem Tang 2, Inampudi Sailaja 3, Mustakin Ahmed Shohel 1, Sheikh Arafat Rahman 2, Nirmal Chandra Mahat 2, Ivvala Anand Shaker 4*
Journal of Angiotherapy 8(7) 1-11 https://doi.org/10.25163/angiotherapy.879742
Submitted: 09 May 2024 Revised: 04 July 2024 Published: 07 July 2024
This study showed the gender-specific toxicological impacts of Chocolate Brown HT as safer food colorant practices and regulatory guidelines.
Abstract
Background: Synthetic colors are prevalent in modern food processing, with Chocolate Brown HT (E155) being widely used to meet the demand for chocolate colors. This study examined the long-term health effects of E155 on both male and female subjects. Methods: Six treatment groups received E155 in low to high dosages (200, 400, and 600 mg/kg body weight) for 40 weeks, while control groups consumed a normal diet. After the feeding period, biochemical and histological evaluations were conducted alongside regular physical observations. Results: The female high-dose (FHD) group exhibited the most significant decrease in body weight. Body Mass Index (BMI) dropped notably in females at moderate (FMD) and high doses (FHD). Serum levels of cholesterol, LDL, and triglycerides increased dose-dependently, with males being more susceptible. Elevated SGPT and SGOT levels indicated liver function impairment due to E155. Both genders showed centrilobular necrosis and fibrosis at high doses, with immune cell invasion even at low doses. Serum creatinine levels, especially in males, were significantly elevated. Females experienced severe injuries, including arteriolar hyalinosis at low doses and IgA nephropathy in the FHD group. Conclusion: The findings underscore serious public health concerns regarding the long-term intake of E155, which can cause significant hepatic and renal damage, particularly in females. This highlights the need for regulatory review and potential restrictions on the use of E155 in food products.
Keywords: Brown HT, Lipid Profile, Centrilobular Necrosis, Hyalinosis, Nephropathy
References
Abd Elhalem, S., El-Atrash, A., Osman, A., Sherif, A., & Salim, E. (2016). Short term toxicity of food additive azo dye, sunset yellow (E110), at low doses, in male Sprague-Dawley rats. Egypt. J. Exp. Biol. Zool, 12, 13–21. https://www.egyseb.net/fulltext/3-1457735338.pdf
Abd-El-Rahim, E. A., Ahmed, F. A., El-Desoky, G. E., & Ramadan, M. E. (1987). Biochemical role of some natural and synthetic food colorants on liver function of rats. Minia Journal of Agricultural Research and Development (Egypt), 9(3), 1117–1131.
Abdel-Rahim, E., El-Beltagi, H. S., Ali, R. F. M., Amer, A. A., & Mousa, S. M. (2019). The Effects of Using Synthetic and Natural Color Foods on Lipid Profile and Liver Function in Rats. Notulae Scientia Biologicae, 11(4), 363–367. https://doi.org/10.15835/nsb11410504
Aboel-Zahab, H., El-Khyat, Z., Sidhom, G., Awadallah, R., Abdel-Al, W., & Mahdy, K. (1997). Physiological effects of some synthetic food colouring additives on rats. Bollettino Chimico Farmaceutico, 136(10), 615–627. PMID: 9528169
Ahmed, M. S., Massoud, A. H., Derbalah, A. S., Al-Brakati, A., Al-Abdawani, M. A., Eltahir, H. A., Yanai, T., & Elmahallawy, E. K. (2020). Biochemical and Histopathological Alterations in Different Tissues of Rats Due to Repeated Oral Dose Toxicity of Cymoxanil. Animals, 10(12), 2205. https://doi.org/10.3390/ani10122205
AK, M. (2018). The Mysterious Domination of Food Contaminants and Adulterants in Bangladesh. Journal of Environmental Science and Public Health, 03(01). https://doi.org/10.26502/jesph.96120046
Alaguprathana, M., & Poonkothai, M. (2021). Haematological, biochemical, enzymological and histological responses of Labeo rohita exposed to methyl orange dye solution treated with Oedogonium subplagiostomum AP1. Environmental Science and Pollution Research, 28(14), 17602–17612. https://doi.org/10.1007/s11356-020-12208-7
Al-Shinnawy, M. S., & Elkattan, N. A. (2013). Assessment of the changes in some diagnostic parameters in male albino rats fed on an Azo Dye. Int. J. Eenv. Sci. Eng, 4, 85–92. https://www.pvamu.edu/engineering/wp-content/uploads/sites/30/IJESE-vol-4-issue-8.pdf
Amin, K. A., Abdel Hameid, H., & Abd Elsttar, A. H. (2010). Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food and Chemical Toxicology, 48(10), 2994–2999. https://doi.org/10.1016/j.fct.2010.07.039
Arefin, S., Hossain, M. S., Neshe, S. A., Rashid, M. M. O., Amin, M. T., & Hussain, M. S. (2017). Tartrazine induced changes in physiological and biochemical parameters in Swiss albino mice, Mus musculus. Marmara Pharmaceutical Journal, 21(3), 564–569. https://doi.org/10.12991/marupj.319304
Barot, J., & Bahadur, A. (2013). Behavioural and histopathological effects of azod e on kidne and gills of Labeo rohita fingerlings. Journal of Environmental Biology, 34, 147–152. https://jeb.co.in/journal_issues/201303_mar13/paper_01.pdf
Bawazir, A. E. (2012). Effect of chocolate brown HT with olive oil on some neurotransmitters in different brain regions, physiological and histological structure of liver and kidney of male albino rats. Journal of Evolutionary Biology Research, 4(1), 13–23. https://doi.org/10.5897/JEBR12.001
Chequer, F. M. D., Lizier, T. M., de Felício, R., Zanoni, M. V. B., Debonsi, H. M., Lopes, N. P., Marcos, R., & de Oliveira, D. P. (2011). Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye Disperse Red 1. Toxicology in Vitro, 25(8), 2054–2063. https://doi.org/10.1016/j.tiv.2011.05.033
Crawley, W. T., Jungels, C. G., Stenmark, K. R., & Fini, M. A. (2022). U-shaped association of uric acid to overall-cause mortality and its impact on clinical management of hyperuricemia. Redox Biology, 51, 102271. https://doi.org/10.1016/j.redox.2022.102271
de Oliveira, E. P., & Burini, R. C. (2012). High plasma uric acid concentration: causes and consequences. Diabetology & Metabolic Syndrome, 4(1), 12. https://doi.org/10.1186/1758-5996-4-12
Demirkol, O., Zhang, X., & Ercal, N. (2012). Oxidative effects of Tartrazine (CAS No. 1934-21-0) and New Coccin (CAS No. 2611-82-7) azo dyes on CHO cells. Journal Für Verbraucherschutz Und Lebensmittelsicherheit, 7(3), 229–236. https://doi.org/10.1007/s00003-012-0782-z
EFSA Panel on Food Additives and Nutrient Sources (ANS). (2010). Scientific Opinion on the re-evaluation of Brown HT (E 155) as a food additive. EFSA Journal, 8(4), 1536. https://doi.org/https://doi.org/10.2903/j.efsa.2010.1536
Elbanna, K., Sarhan, O. M., Khider, M., Elmogy, M., Abulreesh, H. H., & Shaaban, M. R. (2017). Microbiological, histological, and biochemical evidence for the adverse effects of food azo dyes on rats. Journal of Food and Drug Analysis, 25(3), 667–680. https://doi.org/10.1016/j.jfda.2017.01.005
Eraslan, G., Kanbur, M., & Silici, S. (2007). Evaluation of propolis effects on some biochemical parameters in rats treated with sodium fluoride. Pesticide Biochemistry and Physiology, 88(3), 273–283. https://doi.org/10.1016/j.pestbp.2007.01.002
Escobar, J. A., Rubio, M. A., & Lissi, E. A. (1996). SOD and catalase inactivation by singlet oxygen and peroxyl radicals. Free Radical Biology and Medicine, 20(3), 285–290. https://doi.org/10.1016/0891-5849(95)02037-3
Ezeuko Vitalis, C., Nwokocha Chukwuemeka, R., Mounmbegna Philippe, E., & Nriagu Chinonso, C. (2007). Effects of Zingiber officinale on liver function of mercuric chloride-induced hepatotoxicity in adult Wistar rats. Electron J Biomed, 3, 40–45. https://www.biomed.uninet.edu/2007/n3/vitalis.html
Gautam, D., Sharma, G., & Goyal, R. P. (2010). Evaluation of toxic impact of tartrazine on male Swiss albino mice. Pharmacologyonline, 1, 133–140.
Hassan, A. J., & Salman, H. A. (2016). The Effect Study of Using Different Concentrations of Chocolate Brown Dye (Chocolate Brown HT E155) on Some Physiological Parameters and Histological Structure of Stomach and Intestine on Albino Rats. Journal of Al-Qadisiyah for Pure Science (Quarterly), 2(21), 24–35.
Himri, I., Bellahcen, S., Souna, F., Belmekki, F., Aziz, M., Bnouham, M., Zoheir, J., Berkia, Z., Mekhfi, H., & Saalaoui, E. A. (2011). A 90-day oral toxicity study of tartrazine, a synthetic food dye, in wistar rats. Group, 300(00).
Hong, M.-N., Suh, H.-J., Lee, O.-H., Chun, H.-S., & Lee, C. (2014). Improved analytical method of synthetic food colour additive, Brown HT by high-performance liquid chromatography. Journal of International Scientific Publications: Agriculture & Food, 2, 68–75.
Hoque, M. (2023). Unveiling The Silent Threat: Food Adulteration in Bangladesh. International Journal of Biological Innovations, 05(02), 21–26. https://doi.org/10.46505/IJBI.2023.5203
Hussain, B., Sajad, M., Usman, H., A. Al-Ghanim, K., Riaz, M. N., Berenjian, A., Mahboob, S., & Show, P. L. (2022). Assessment of hepatotoxicity and nephrotoxicity in Cirrhinus mrigala induced by trypan blue - An azo dye. Environmental Research, 215, 114120. https://doi.org/10.1016/j.envres.2022.114120
Ibrahim, A. A. E., El-Sherbeny, S. A., & Al-Shaikh, T. M. (2020). Prophylactic effect of vitamin e on carmoisine food dye induced kidney damage in male mice: histological, physiological and immunological studies. Applied Biological Research, 22(1), 34. https://doi.org/10.5958/0974-4517.2020.00007.5
Lautrette, A., Phan, T.-N., Ouchchane, L., AitHssain, A., Tixier, V., Heng, A.-E., & Souweine, B. (2012). High creatinine clearance in critically ill patients with community-acquired acute infectious meningitis. BMC Nephrology, 13, 1–7. https://doi.org/10.1186/1471-2369-13-124
Moutaouakkil, A., Zeroual, Y., Zohra Dzayri, F., Talbi, M., Lee, K., & Blaghen, M. (2003). Purification and partial characterization of azoreductase from Enterobacter agglomerans. Archives of Biochemistry and Biophysics, 413(1), 139–146. https://doi.org/10.1016/S0003-9861(03)00096-1
Nascimento, A. F., Sugizaki, M. M., Leopoldo, A. S., Lima-Leopoldo, A. P., Nogueira, C. R., Novelli, E. L. B., Padovani, C. R., & Cicogna, A. C. (2008). Misclassification probability as obese or lean in hypercaloric and normocaloric diet. Biological Research, 41(3). https://doi.org/10.4067/S0716-97602008000300002
National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. (2011). Guide for the Care and Use of Laboratory Animals. In THE NATIONAL ACADEMIES PRESS (8th edition). National Academies Press. https://doi.org/10.17226/12910
Praga, M. (2005). Synergy of low nephron number and obesity: a new focus on hyperfiltration nephropathy. Nephrology Dialysis Transplantation, 20(12), 2594–2597. https://doi.org/10.1093/ndt/gfi201
Roosdiana, A., Hendrawan, V. F., & Wulandari, M. (2019). The Rice Bran as Therapy Agent to Decrease the SGOT/SGPT activities and Improve the Histopathology of Liver in White Rat (Rattus norvegicus) Induced by High Cholesterol Diet. IOP Conference Series: Materials Science and Engineering, 546(6), 062026. https://doi.org/10.1088/1757-899X/546/6/062026
Saxena, B., & Sharma, S. (2015). Food Color Induced Hepatotoxicity in Swiss Albino Rats, Rattus norvegicus. Toxicology International, 22(1), 152–157. https://doi.org/10.4103/0971-6580.172286
Sayed, H. M., Fouad, D., Ataya, F. S., Hassan, N. H. A., & Fahmy, M. A. (2012). The modifying effect of selenium and vitamins A, C, and E on the genotoxicity induced by sunset yellow in male mice. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 744(2), 145–153. https://doi.org/10.1016/j.mrgentox.2012.02.003
Shaker, A. M. H., Ismail, I. A., & El Nemr, S. E. (1989). Effect of different food stuff colourants added to casein diet on biological evaluation. Bulletin of the National Nutrition Institute of the Arab Republic of Egypt, 9(1), 77–86.
Sharma, A., Goyal, R. P., Chakravarty, G., & Sharma, S. (2005). Haemotoxic effects of chocolate brown, a commonly used blend of permitted food colour on Swiss albino mice. Asian J Exp Sci, 19(2), 93–103.
Shokrollahi, A., & Ahmadi, S. (2017). Determination of trace amounts of Brown HT as a food dye by a CPE-scanometry method. Journal of Taibah University for Science, 11(1), 196–204. https://doi.org/10.1016/j.jtusci.2016.04.008
Takeda, H., Nakajima, A., & Kiriyama, S. (1992). Beneficial effect of dietary fiber on the upper gastrointestinal transit time in rats suffering from a toxic dose of amaranth. Bioscience, Biotechnology, and Biochemistry, 56(4), 551–555. https://doi.org/10.1271/bbb.56.551
Wei, F., Cheng, S., Korin, Y., Reed, E. F., Gjertson, D., Ho, C., Gritsch, H. A., & Veale, J. (2012). Serum creatinine detection by a conducting-polymer-based electrochemical sensor to identify allograft dysfunction. Analytical Chemistry, 84(18), 7933–7937. https://doi.org/10.1021/ac3016888
Zralý, Z., Písaríková, B., Trcková, M., Herzig, I., Juzl, M., & Simeonovova, J. (2006). Effect of lupine and amaranth on growth efficiency, health, and carcass characteristics and meat quality of market pigs. Acta Veterinaria Brno, 75(3), 363–372. https://doi.org/10.2754/avb200675030363
View Dimensions
View Altmetric
Save
Citation
View
Share