Efficacy and Toxicity of Nanoencapsulation of Peronema canescens Extract in Reducing ARDS Inflammation In-vivo
Tonny Cortis Maigoda1*, Judiono Judiono2, Felix Zulhendri3,4, Meriwati Meriwati1, Rustam Aji1
Journal of Angiotherapy 8(6) 1-10 https://doi.org/10.25163/angiotherapy.869753
Submitted: 16 April 2024 Revised: 17 June 2024 Published: 23 June 2024
This study demonstrated nanoencapsulation for effective delivery of Peronema canescens extract to reduce ARDS-related inflammation offers potential advancements in respiratory disease management.
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a severe condition frequently observed in intensive care units, particularly exacerbated during the COVID-19 pandemic. Excessive inflammation, often seen in ARDS, poses significant treatment challenges. Peronema canescens, known for its anti-inflammatory and immunomodulatory properties, offers potential therapeutic benefits. This study investigates the impact of nanoencapsulation of P. canescens leaf extract on inflammation in ARDS. Methods: Male Wistar rats were used to model ARDS through intratracheal administration of lipopolysaccharide (LPS). The experimental groups included normal controls, negative controls (LPS only), Imboost, Vitamin C, P. canescens extract, and three doses of nanoencapsulated P. canescens extract (nPC). Clinical observations, histopathological analyses, and serum TNF-α levels were assessed over a 14-day period. Nanoencapsulation involved the use of pectin, chitosan, and Na-tripolyphosphate, and the encapsulated products were characterized for particle size and encapsulation efficiency. Results: The nanoencapsulation efficiency of P. canescens extract was 86.16%, with an average particle size of 496.3 nm. Clinical observations indicated reduced activity and kyphosis in negative control and nPC groups. Macroscopic and histopathological analyses showed significant inflammation and lung damage in these groups compared to normal, Imboost, Vitamin C, and P. canescens extract groups. Serum TNF-α levels were significantly lower in the P. canescens extract group compared to the negative control on day 14, but no significant difference was observed between the nPC and negative control groups. Conclusion: While P. canescens extract demonstrated efficacy in reducing inflammation and improving lung health in ARDS rats, the nanoencapsulated form did not enhance therapeutic outcomes. The potential reasons include poor bioactive compound release and possible adverse interactions with encapsulation materials. Further research is needed to explore the kinetics of bioactive compound release and the potential toxicity of nanoencapsulation materials.
Keywords: Acute Respiratory Distress Syndrome (ARDS), Peronema canescens, Nanoencapsulation, Anti-inflammatory, Bioactive compounds
References
Bazana, M.T., Codevilla, C.F., de Menezes, C.R., 2019. Nanoencapsulation of bioactive compounds: challenges and perspectives. Curr. Opin. Food Sci. 26, 47–56. https://doi.org/10.1016/j.cofs.2019.03.005
De Souza Xavier Costa, N., Ribeiro, G., Dos Santos Alemany, A.A., Belotti, L., Zati, D.H., Frota Cavalcante, M., Veras, M.M., Ribeiro, S., Kallás, E.G., Saldiva, P.H.N., Dolhnikoff, M., Da Silva, L.F.F., 2017. Early and late pulmonary effects of nebulized LPS in mice: An acute lung injury model. PLoS One 12. https://doi.org/10.1371/journal.pone.0185474
Di Santo, M.C., D’ Antoni, C.L., Domínguez Rubio, A.P., Alaimo, A., Pérez, O.E., 2021. Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications − A review. Biomed. Pharmacother. 142. https://doi.org/10.1016/j.biopha.2021.111970
Domingues, C., Santos, A., Alvarez-Lorenzo, C., Concheiro, A., Jarak, I., Veiga, F., Barbosa, I., Dourado, M., Figueiras, A., 2022. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS Nano 16, 9994–10041. https://doi.org/10.1021/acsnano.2c00128
Elfita, Oktiansyah, R., Mardiyanto, Widjajanti, H., Setiawan, A., 2022. Antibacterial and antioxidant activity of endophytic fungi isolated from Peronema canescens leaves. Biodiversitas 23, 4783–4792. https://doi.org/10.13057/biodiv/d230946
Ezhilarasi, P.N., Karthik, P., Chhanwal, N., Anandharamakrishnan, C., 2013. Nanoencapsulation Techniques for Food Bioactive Components: A Review. Food Bioprocess Technol. 6, 628–647. https://doi.org/10.1007/s11947-012-0944-0
Faffe, D.S., Seidl, V.R., Chagas, P.S.C., Gonçalves de Moraes, V.L., Capelozzi, V.L., Rocco, P.R.M., Zin, W.A., 2000. Respiratory effects of lipopolysaccharide-induced inflammatory lung injury in mice. Eur. Respir. J. 15, 85–91. https://doi.org/10.1183/09031936.00.15108500
Fiala, A., Slagle, C., Legband, N., Aghabaglou, F., Buesing, K., Borden, M., Harris, S., Terry, B., 2020. Treatment of a Rat Model of LPS-Induced ARDS via Peritoneal Perfusion of Oxygen Microbubbles. J. Surg. Res. 246, 450–456. https://doi.org/10.1016/j.jss.2019.09.017
Håkansson, H.F., Smailagic, A., Brunmark, C., Miller-Larsson, A., Lal, H., 2012. Altered lung function relates to inflammation in an acute LPS mouse model. Pulm. Pharmacol. Ther. 25, 399–406. https://doi.org/10.1016/j.pupt.2012.08.001
Huang, Y.C., Vieira, A., Huang, K.L., Yeh, M.K., Chiang, C.H., 2005. Pulmonary inflammation caused by chitosan microparticles. J. Biomed. Mater. Res. - Part A 75, 283–287. https://doi.org/10.1002/jbm.a.30421
Huang, Y.W., Cambre, M., Lee, H.J., 2017. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. Int. J. Mol. Sci. 18. https://doi.org/10.3390/ijms18122702
Koksel, O., Cinel, I., Tamer, L., Cinel, L., Ozdulger, A., Kanik, A., Ercan, B., Oral, U., 2004. N-acetylcysteine inhibits peroxynitrite-mediated damage in oleic acid-induced lung injury. Pulm. Pharmacol. Ther. 17, 263–270. https://doi.org/10.1016/j.pupt.2004.05.002
Laksmitawati, D.R., Widyastuti, A., Karami, N., Afifah, E., Rihibiha, D.D., Nufus, H., Widowati, W., 2017. Anti-inflammatory effects of Anredera cordifolia and piper crocatum extracts on lipopolysaccharide-stimulated macrophage cell line. Bangladesh J. Pharmacol. 12, 35–40. https://doi.org/10.3329/bjp.v12i1.28714
Latief, M., Sari, P.M., Fatwa, L.T., Tarigan, I.L., Rupasinghe, H.P.V., 2021. Antidiabetic Activity of Sungkai (Peronema canescens Jack) Leaves Ethanol Extract on the Male Mice Induced Alloxan Monohydrate. Pharmacol. Clin. Pharm. Res. 6, 64. https://doi.org/10.15416/pcpr.v6i2.31666
Lee, S.A., Lee, S.H., Kim, J.Y., Lee, W.S., 2019. Effects of glycyrrhizin on lipopolysaccharide-induced acute lung injury in a mouse model. J. Thorac. Dis. 11, 1287–1302. https://doi.org/10.21037/jtd.2019.04.14
Maigoda, T., Judiono, J., Purkon, D., Haerussana, A., 2023. Peronema canescens ethanol extract attenuates inflammatory biomarkers and lung damage in ARDS rats animal models induced by LPS. J. Appl. Pharm. Sci. 13, 123–131.
Maigoda, T., Judiono, J., Purkon, D.B., Haerussana, A.N.E.M., Mulyo, G.P.E., 2022. Evaluation of Peronema canescens Leaves Extract: Fourier Transform Infrared Analysis, Total Phenolic and Flavonoid Content, Antioxidant Capacity, and Radical Scavenger Activity. Open Access Maced. J. Med. Sci. 10, 117–124. https://doi.org/10.3889/oamjms.2022.8221
Massey, V.L., Poole, L.G., Siow, D.L., Torres, E., Warner, N.L., Schmidt, R.H., Ritzenthaler, J.D., Roman, J., Arteel, G.E., 2015. Chronic Alcohol Exposure Enhances Lipopolysaccharide-Induced Lung Injury in Mice: Potential Role of Systemic Tumor Necrosis Factor-Alpha. Alcohol. Clin. Exp. Res. 39, 1978–1988. https://doi.org/10.1111/acer.12855
Oktiansyah, R., Elfita, E., Widjajanti, H., Setiawan, A., Mardiyanto, M., Nasution, S.S.A., 2023. Antioxidant and Antibacterial Activity of Endophytic Fungi Isolated from The Leaves of Sungkai (Peronema canescens). Trop. J. Nat. Prod. Res. 7, 2596–2604. https://doi.org/10.26538/tjnpr/v7i3.20
Pateiro, M., Gómez, B., Munekata, P.E.S., Barba, F.J., Putnik, P., Kovacevic, D.B., Lorenzo, J.M., 2021. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules 26. https://doi.org/10.3390/molecules26061547
Pisoschi, A.M., Pop, A., Cimpeanu, C., Turcus, V., Predoi, G., Iordache, F., 2018. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. Eur. J. Med. Chem. 157, 1326–1345. https://doi.org/10.1016/j.ejmech.2018.08.076
Poulos, S.G., Borlongan, C. V., 2000. Artificial lighting conditions and melatonin alter motor performance in adult rats. Neurosci. Lett. 280, 33–36. https://doi.org/10.1016/S0304-3940(99)00997-0
Purkon, D.B., Iwo, M.I., Soemardji, A.A., Rahmawati, S.F., Fadhlillah, F.M., Nadhifah, A., 2021. Immunostimulant Activity of Marchantia paleacea Bertol. Herb Liverwort Ethanol Extract in BALB/c Mice. Indones. J. Pharm. 32, 464–473. https://doi.org/10.22146/ijp.2128
Putranto, A.M.H., 2014. EXAMINATION OF THE SUNGKAI’S YOUNG LEAF EXTRACT (Peronema canescens) AS AN ANTIPIRETIC, IMMUNITY, ANTIPLASMODIUM AND TERATOGENITY IN MICE (Mus.muculus). Int. J. Sci. Eng. 7. https://doi.org/10.12777/ijse.7.1.30-34
Ramadenti, F., Sundaryono, A., Handayani, D., 2017. Test of Ethyl Acetate Fraction of Peronema canescens Leaves against Plasmodium berghei in Mus musculus. Alotrop J. Pendidik. dan Ilmu Kim. 2, 89–92.
Rezaei, A., Fathi, M., Jafari, S.M., 2019. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll. 88, 146–162. https://doi.org/10.1016/j.foodhyd.2018.10.003
Seger, S., Stritt, M., Vezzali, E., Nayler, O., Hess, P., Groenen, P.M.A., Stalder, A.K., 2018. A fully automated image analysis method to quantify lung fibrosis in the bleomycininduced rat model. PLoS One 13. https://doi.org/10.1371/journal.pone.0193057
Sinam, G., Sahu, V., Pandey, N., Asthana, A.K., 2016. Effect of arsenic on biochemical and antioxidant enzymes in two species of Marchantia L. (Marchantiophyta): Role of enzymes in stress acclimatization 79–85.
Soares-Cunha, C., Coimbra, B., Borges, S., Domingues, A.V., Silva, D., Sousa, N., Rodrigues, A.J., 2018. Mild prenatal stress causes emotional and brain structural modifications in rats of both sexes. Front. Behav. Neurosci. 12. https://doi.org/10.3389/fnbeh.2018.00129
Taouzinet, L., Djaoudene, O., Fatmi, S., Bouiche, C., Amrane-Abider, M., Bougherra, H., Rezgui, F., Madani, K., 2023. Trends of Nanoencapsulation Strategy for Natural Compounds in the Food Industry. Processes 11. https://doi.org/10.3390/pr11051459
View Dimensions
View Altmetric
Save
Citation
View
Share