Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Advances in Cellular Models of Atherosclerosis

Anastasia V. Poznyak 1*, Victoria A. Khotina 2, Victor Y Glanz 2, Alexander L Golovyuk 3, Dmitriy Yu Serdyukov 4, Vasily N. Sukhorukov 1, Igor Alexandrovich Sobenin 2, Alexander N. Orekhov 1

+ Author Affiliations

Journal of Angiotherapy 8(3) 1-13 https://doi.org/10.25163/angiotherapy.839503

Submitted: 22 January 2024  Revised: 12 March 2024  Published: 15 March 2024 

Atherosclerosis models, from 2D cultures to 3D tissue-engineered vessels, offer cost-effective avenues for drug screening and personalized medicine, advancing therapeutic discovery.

Abstract


Atherosclerosis is a disease with a complex pathogenesis, consisting of the interrelationships of many different elements. In light of the increasing spread of cardiovascular diseases, the precursor of which is atherosclerosis, the study of the intricacies of its pathogenesis remains an important research task. For its achievement, it is necessary to choose the right model. To date, the most common are models of small animals, in particular mice. However, extensive work is being carried out towards the development of cellular models that would allow moving away from the use of animals as model objects, as well as bypassing the problems of translating the results. In this review, we collected data on the current advances in the field of cellular models of atherosclerosis.

Keywords: Cellular models; In Vitro models; Atherosclerosis.

References


Agarwal, P., Combes, T. W., Shojaee-Moradie, F., Fielding, B., Gordon, S., Mizrahi, V., & Martinez, F. O. (2020). Foam Cells Control Mycobacterium tuberculosis Infection. Frontiers in microbiology, 11, 1394. https://doi.org/10.3389/fmicb.2020.01394

Barnes, R. H., 2nd, Akama, T., Öhman, M. K., Woo, M. S., Bahr, J., Weiss, S. J., Eitzman, D. T., & Chun, T. H. (2017). Membrane-Tethered Metalloproteinase Expressed by Vascular Smooth Muscle Cells Limits the Progression of Proliferative Atherosclerotic Lesions. Journal of the American Heart Association, 6(7), e003693. https://doi.org/10.1161/JAHA.116.003693

Bialkowska, K., Komorowski, P., Bryszewska, M., & Milowska, K. (2020). Spheroids as a Type of Three-Dimensional Cell Cultures-Examples of Methods of Preparation and the Most Important Application. International journal of molecular sciences, 21(17), 6225. https://doi.org/10.3390/ijms21176225

Bowen, R. A., & Remaley, A. T. (2014). Interferences from blood collection tube components on clinical chemistry assays. Biochemia medica, 24(1), 31–44. https://doi.org/10.11613/BM.2014.006

Brancato, V., Oliveira, J. M., Correlo, V. M., Reis, R. L., & Kundu, S. C. (2020). Could 3D models of cancer enhance drug screening?. Biomaterials, 232, 119744. https://doi.org/10.1016/j.biomaterials.2019.119744

Cai, Q., Liao, W., Xue, F., Wang, X., Zhou, W., Li, Y., & Zeng, W. (2021). Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioactive materials, 6(8), 2557–2568. https://doi.org/10.1016/j.bioactmat.2020.12.021

Chavez, R. D., Walls, S. L., & Cardinal, K. O. (2019). Tissue-engineered blood vessel mimics in complex geometries for intravascular device testing. PloS one, 14(6), e0217709. https://doi.org/10.1371/journal.pone.0217709

Chen M. F. (2021). The role of calmodulin and calmodulin-dependent protein kinases in the pathogenesis of atherosclerosis. Tzu chi medical journal, 34(2), 160–168. https://doi.org/10.4103/tcmj.tcmj_119_21

Chen, J., Zhang, X., Millican, R., Lynd, T., Gangasani, M., Malhotra, S., Sherwood, J., Hwang, P. T., Cho, Y., Brott, B. C., Qin, G., Jo, H., Yoon, Y. S., & Jun, H. W. (2022). Recent Progress in in vitro Models for Atherosclerosis Studies. Frontiers in cardiovascular medicine, 8, 790529. https://doi.org/10.3389/fcvm.2021.790529

Chen, R., Wang, B., Liu, Y., He, J., Lin, R., & Li, D. (2019). Gelatin-based perfusable, endothelial carotid artery model for the study of atherosclerosis. Biomedical engineering online, 18(1), 87. https://doi.org/10.1186/s12938-019-0706-6

Chen, R., Wang, B., Liu, Y., He, J., Lin, R., & Li, D. (2019). Gelatin-based perfusable, endothelial carotid artery model for the study of atherosclerosis. Biomedical engineering online, 18(1), 87. https://doi.org/10.1186/s12938-019-0706-6

Chen, Z., Tang, M., Huang, D., Jiang, W., Li, M., Ji, H., Park, J., Xu, B., Atchison, L. J., Truskey, G. A., & Leong, K. W. (2018). Real-time observation of leukocyte-endothelium interactions in tissue-engineered blood vessel. Lab on a chip, 18(14), 2047–2054. https://doi.org/10.1039/c8lc00202a

Chen, Z., Tang, M., Huang, D., Jiang, W., Li, M., Ji, H., Park, J., Xu, B., Atchison, L. J., Truskey, G. A., & Leong, K. W. (2018). Real-time observation of leukocyte-endothelium interactions in tissue-engineered blood vessel. Lab on a chip, 18(14), 2047–2054. https://doi.org/10.1039/c8lc00202a

Chiu, C. W., Hsieh, C. Y., Yang, C. H., Tsai, J. H., Huang, S. Y., & Sheu, J. R. (2022). Yohimbine, an α2-Adrenoceptor Antagonist, Suppresses PDGF-BB-Stimulated Vascular Smooth Muscle Cell Proliferation by Downregulating the PLCγ1 Signaling Pathway. International journal of molecular sciences, 23(14), 8049. https://doi.org/10.3390/ijms23148049

Chun, T. H., Sabeh, F., Ota, I., Murphy, H., McDonagh, K. T., Holmbeck, K., Birkedal-Hansen, H., Allen, E. D., & Weiss, S. J. (2004). MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. The Journal of cell biology, 167(4), 757–767. https://doi.org/10.1083/jcb.200405001

Davis, J. L., Zhang, Y., Yi, S., Du, F., Song, K. H., Scott, E. A., Sun, C., & Zhang, H. F. (2020). Super-Resolution Imaging of Self-Assembled Nanocarriers Using Quantitative Spectroscopic Analysis for Cluster Extraction. Langmuir : the ACS journal of surfaces and colloids, 36(9), 2291–2299. https://doi.org/10.1021/acs.langmuir.9b03149

Delannoy, E., Tellier, G., Cholet, J., Leroy, A. M., Treizebré, A., & Soncin, F. (2022). Multi-Layered Human Blood Vessels-on-Chip Design Using Double Viscous Finger Patterning. Biomedicines, 10(4), 797. https://doi.org/10.3390/biomedicines10040797

Demir, V., Dogru, M. T., Ede, H., Yilmaz, S., Alp, C., Celik, Y., & Yildirim, N. (2018). The effects of treatment with atorvastatin versus rosuvastatin on endothelial dysfunction in patients with hyperlipidaemia. Cardiovascular journal of Africa, 29(3), 162–166. https://doi.org/10.5830/CVJA-2018-008

Dorweiler, B., Torzewski, M., Dahm, M., Ochsenhirt, V., Lehr, H. A., Lackner, K. J., & Vahl, C. F. (2006). A novel in vitro model for the study of plaque development in atherosclerosis. Thrombosis and haemostasis, 95(1), 182–189.

Dudley, A. C., & Griffioen, A. W. (2023). Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis, 26(3), 313–347. https://doi.org/10.1007/s10456-023-09876-7

El-Sherbiny, I. M., & Yacoub, M. H. (2013). Hydrogel scaffolds for tissue engineering: Progress and challenges. Global cardiology science & practice, 2013(3), 316–342. https://doi.org/10.5339/gcsp.2013.38

Garcia-Sabaté, A., Mohamed, W. K. E., Sapudom, J., Alatoom, A., Al Safadi, L., & Teo, J. C. M. (2020). Biomimetic 3D Models for Investigating the Role of Monocytes and Macrophages in Atherosclerosis. Bioengineering (Basel, Switzerland), 7(3), 113. https://doi.org/10.3390/bioengineering7030113

Ghosh, N., Das, A., Biswas, N., Mahajan, S. P., Madeshiya, A. K., Khanna, S., Sen, C. K., & Roy, S. (2022). Myo-Inositol in Fermented Sugar Matrix Improves Human Macrophage Function. Molecular nutrition & food research, 66(8), e2100852. https://doi.org/10.1002/mnfr.202100852

Greco, M. F., Rizzuto, A. S., Zarà, M., Cafora, M., Favero, C., Solazzo, G., Giusti, I., Adorni, M. P., Zimetti, F., Dolo, V., Banfi, C., Ferri, N., Sirtori, C. R., Corsini, A., Barbieri, S. S., Pistocchi, A., Bollati, V., Macchi, C., & Ruscica, M. (2022). PCSK9 Confers Inflammatory Properties to Extracellular Vesicles Released by Vascular Smooth Muscle Cells. International journal of molecular sciences, 23(21), 13065. https://doi.org/10.3390/ijms232113065

Hasan, A., Paul, A., Memic, A., & Khademhosseini, A. (2015). A multilayered microfluidic blood vessel-like structure. Biomedical microdevices, 17(5), 88. https://doi.org/10.1007/s10544-015-9993-2

He, D., Mao, A., Zheng, C. B., Kan, H., Zhang, K., Zhang, Z., Feng, L., & Ma, X. (2020). Aortic heterogeneity across segments and under high fat/salt/glucose conditions at the single-cell level. National science review, 7(5), 881–896. https://doi.org/10.1093/nsr/nwaa038

Hoerstrup, S. P., Kadner, A., Melnitchouk, S., Trojan, A., Eid, K., Tracy, J., Sodian, R., Visjager, J. F., Kolb, S. A., Grunenfelder, J., Zund, G., & Turina, M. I. (2002). Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation, 106(12 Suppl 1), I143–I150.

Hosseini, V., Mallone, A., Mirkhani, N., Noir, J., Salek, M., Pasqualini, F. S., Schuerle, S., Khademhosseini, A., Hoerstrup, S. P., & Vogel, V. (2020). A Pulsatile Flow System to Engineer Aneurysm and Atherosclerosis Mimetic Extracellular Matrix. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 7(12), 2000173. https://doi.org/10.1002/advs.202000173

Ilhan, F., & Kalkanli, S. T. (2015). Atherosclerosis and the role of immune cells. World journal of clinical cases, 3(4), 345–352. https://doi.org/10.12998/wjcc.v3.i4.345

Klotz, B. J., Gawlitta, D., Rosenberg, A. J. W. P., Malda, J., & Melchels, F. P. W. (2016). Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair. Trends in biotechnology, 34(5), 394–407. https://doi.org/10.1016/j.tibtech.2016.01.002

Kuppusamy, P., Kim, D., Soundharrajan, I., Hwang, I., & Choi, K. C. (2020). Adipose and Muscle Cell Co-Culture System: A Novel In Vitro Tool to Mimic the In Vivo Cellular Environment. Biology, 10(1), 6. https://doi.org/10.3390/biology10010006

Laterreur, V., Ruel, J., Auger, F. A., Vallières, K., Tremblay, C., Lacroix, D., Tondreau, M., Bourget, J. M., & Germain, L. (2014). Comparison of the direct burst pressure and the ring tensile test methods for mechanical characterization of tissue-engineered vascular substitutes. Journal of the mechanical behavior of biomedical materials, 34, 253–263. https://doi.org/10.1016/j.jmbbm.2014.02.017.

Lee, J. H., Chen, Z., He, S., Zhou, J., Tsai, A., Truskey, G., & Leong, K. W. (2021). Emulating Early Atherosclerosis in a Vascular Microphysiological System Using Branched Tissue-Engineered Blood Vessels. Advanced biology, 5(4), e2000428. https://doi.org/10.1002/adbi.202000428

Liu, M., Samant, S., Vasa, C. H., Pedrigi, R. M., Oguz, U. M., Ryu, S., Wei, T., Anderson, D. R., Agrawal, D. K., & Chatzizisis, Y. S. (2023). Co-culture models of endothelial cells, macrophages, and vascular smooth muscle cells for the study of the natural history of atherosclerosis. PloS one, 18(1), e0280385. https://doi.org/10.1371/journal.pone.0280385

Liu, M., Samant, S., Vasa, C. H., Pedrigi, R. M., Oguz, U. M., Ryu, S., Wei, T., Anderson, D. R., Agrawal, D. K., & Chatzizisis, Y. S. (2023). Co-culture models of endothelial cells, macrophages, and vascular smooth muscle cells for the study of the natural history of atherosclerosis. PloS one, 18(1), e0280385. https://doi.org/10.1371/journal.pone.0280385

Liu, M., Wang, D., Gu, S., Tian, B., Liang, J., Suo, Q., Zhang, Z., Yang, G., Zhou, Y., & Li, S. (2021). Micro/nano materials regulate cell morphology and intercellular communication by extracellular vesicles. Acta biomaterialia, 124, 130–138. https://doi.org/10.1016/j.actbio.2021.02.003

Ma, C., Xia, R., Yang, S., Liu, L., Zhang, J., Feng, K., Shang, Y., Qu, J., Li, L., Chen, N., Xu, S., Zhang, W., Mao, J., Han, J., Chen, Y., Yang, X., Duan, Y., & Fan, G. (2020). Formononetin attenuates atherosclerosis via regulating interaction between KLF4 and SRA in apoE-/- mice. Theranostics, 10(3), 1090–1106. https://doi.org/10.7150/thno.38115

Mallone, A., Stenger, C., Von Eckardstein, A., Hoerstrup, S. P., & Weber, B. (2018). Biofabricating atherosclerotic plaques: In vitro engineering of a three-dimensional human fibroatheroma model. Biomaterials, 150, 49–59. https://doi.org/10.1016/j.biomaterials.2017.09.034

Méndez-Barbero, N., Gutiérrez-Muñoz, C., & Blanco-Colio, L. M. (2021). Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. International journal of molecular sciences, 22(14), 7284. https://doi.org/10.3390/ijms22147284

Mitra, S., Murthy, G.S. Bioreactor control systems in the biopharmaceutical industry: a critical perspective. Syst Microbiol and Biomanuf 2, 91–112 (2022). https://doi.org/10.1007/s43393-021-00048-6

Mohandas, S., Gayatri, V., Kumaran, K., Gopinath, V., Paulmurugan, R., & Ramkumar, K. M. (2023). New Frontiers in Three-Dimensional Culture Platforms to Improve Diabetes Research. Pharmaceutics, 15(3), 725. https://doi.org/10.3390/pharmaceutics15030725

Nguyen, L. T. H., Muktabar, A., Tang, J., Wong, Y. S., Thaxton, C. S., Venkatraman, S. S., & Ng, K. W. (2018). The Potential of Fluocinolone Acetonide to Mitigate Inflammation and Lipid Accumulation in 2D and 3D Foam Cell Cultures. BioMed research international, 2018, 3739251. https://doi.org/10.1155/2018/3739251

Nicodemus, G. D., & Bryant, S. J. (2008). Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue engineering. Part B, Reviews, 14(2), 149–165. https://doi.org/10.1089/ten.teb.2007.0332

Nikiforov, N. G., Wetzker, R., Kubekina, M. V., Petukhova, A. V., Kirichenko, T. V., & Orekhov, A. N. (2019). Trained Circulating Monocytes in Atherosclerosis: Ex Vivo Model Approach. Frontiers in pharmacology, 10, 725. https://doi.org/10.3389/fphar.2019.00725

Owsiany, K. M., Alencar, G. F., & Owens, G. K. (2019). Revealing the Origins of Foam Cells in Atherosclerotic Lesions. Arteriosclerosis, thrombosis, and vascular biology, 39(5), 836–838. https://doi.org/10.1161/ATVBAHA.119.312557

Paloschi, V., Sabater-Lleal, M., Middelkamp, H., Vivas, A., Johansson, S., van der Meer, A., Tenje, M., & Maegdefessel, L. (2021). Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovascular research, 117(14), 2742–2754. https://doi.org/10.1093/cvr/cvab088

Pan, C., Gao, Q., Kim, B. S., Han, Y., & Gao, G. (2022). The Biofabrication of Diseased Artery In Vitro Models. Micromachines, 13(2), 326. https://doi.org/10.3390/mi13020326

Poussin, C., Kramer, B., Lanz, H. L., Van den Heuvel, A., Laurent, A., Olivier, T., Vermeer, M., Peric, D., Baumer, K., Dulize, R., Guedj, E., Ivanov, N. V., Peitsch, M. C., Hoeng, J., & Joore, J. (2020). 3D human microvessel-on-a-chip model for studying monocyte-to-endothelium adhesion under flow - application in systems toxicology. ALTEX, 37(1), 47–63. https://doi.org/10.14573/altex.1811301

Poznyak, A. V., Nikiforov, N. G., Starodubova, A. V., Popkova, T. V., & Orekhov, A. N. (2021). Macrophages and Foam Cells: Brief Overview of Their Role, Linkage, and Targeting Potential in Atherosclerosis. Biomedicines, 9(9), 1221. https://doi.org/10.3390/biomedicines9091221

Ronaldson-Bouchard, K., & Vunjak-Novakovic, G. (2018). Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in Drug Development. Cell stem cell, 22(3), 310–324. https://doi.org/10.1016/j.stem.2018.02.011

Ryu, N. E., Lee, S. H., & Park, H. (2019). Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells, 8(12), 1620. https://doi.org/10.3390/cells8121620

S. R., Fish, J. E., & Howe, K. L. (2021). Dysfunctional Vascular Endothelium as a Driver of Atherosclerosis: Emerging Insights Into Pathogenesis and Treatment. Frontiers in pharmacology, 12, 787541. https://doi.org/10.3389/fphar.2021.787541

Salmon, E. E., Breithaupt, J. J., & Truskey, G. A. (2020). Application of Oxidative Stress to a Tissue-Engineered Vascular Aging Model Induces Endothelial Cell Senescence and Activation. Cells, 9(5), 1292. https://doi.org/10.3390/cells9051292

Savoji, H., Mohammadi, M. H., Rafatian, N., Toroghi, M. K., Wang, E. Y., Zhao, Y., Korolj, A., Ahadian, S., & Radisic, M. (2019). Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials, 198, 3–26. https://doi.org/10.1016/j.biomaterials.2018.09.036

Shi, J., Zhou, T., & Chen, Q. (2022). Exploring the expanding universe of small RNAs. Nature cell biology, 24(4), 415–423. https://doi.org/10.1038/s41556-022-00880-5

Song, H. G., Rumma, R. T., Ozaki, C. K., Edelman, E. R., & Chen, C. S. (2018). Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell stem cell, 22(3), 340–354. https://doi.org/10.1016/j.stem.2018.02.009

Stephenson, M., Reich, D. H., & Boheler, K. R. (2019). Induced pluripotent stem cell-derived vascular smooth muscle cells. Vascular biology (Bristol, England), 2(1), R1–R15. https://doi.org/10.1530/VB-19-0028

Strobel, H. A., Hookway, T. A., Piola, M., Fiore, G. B., Soncini, M., Alsberg, E., & Rolle, M. W. (2018). Assembly of Tissue-Engineered Blood Vessels with Spatially Controlled Heterogeneities. Tissue engineering. Part A, 24(19-20), 1492–1503. https://doi.org/10.1089/ten.TEA.2017.0492

Su, C., Menon, N. V., Xu, X., Teo, Y. R., Cao, H., Dalan, R., Tay, C. Y., & Hou, H. W. (2021). A novel human arterial wall-on-a-chip to study endothelial inflammation and vascular smooth muscle cell migration in early atherosclerosis. Lab on a chip, 21(12), 2359–2371. https://doi.org/10.1039/d1lc00131k

Su, X., Rakshit, M., Das, P., Gupta, I., Das, D., Pramanik, M., Ng, K. W., & Kwan, J. (2021). Ultrasonic Implantation and Imaging of Sound-Sensitive Theranostic Agents for the Treatment of Arterial Inflammation. ACS applied materials & interfaces, 13(21), 24422–24430. https://doi.org/10.1021/acsami.1c01161

Sui, B., Gao, P., Lin, Y., Gao, B., Liu, L., & An, J. (2008). Blood flow pattern and wall shear stress in the internal carotid arteries of healthy subjects. Acta radiologica (Stockholm, Sweden : 1987), 49(7), 806–814. https://doi.org/10.1080/02841850802068624.

Truskey G. A. (2016). Advancing cardiovascular tissue engineering. F1000Research, 5, F1000 Faculty Rev-1045. https://doi.org/10.12688/f1000research.8237.1

Vaidyanathan, K., Wang, C., Krajnik, A., Yu, Y., Choi, M., Lin, B., Jang, J., Heo, S. J., Kolega, J., Lee, K., & Bae, Y. (2021). A machine learning pipeline revealing heterogeneous responses to drug perturbations on vascular smooth muscle cell spheroid morphology and formation. Scientific reports, 11(1), 23285. https://doi.org/10.1038/s41598-021-02683-4

Vedder, V. L., Aherrahrou, Z., & Erdmann, J. (2020). Dare to Compare. Development of Atherosclerotic Lesions in Human, Mouse, and Zebrafish. Frontiers in cardiovascular medicine, 7, 109. https://doi.org/10.3389/fcvm.2020.00109

Vincent, M. P., Navidzadeh, J. O., Bobbala, S., & Scott, E. A. (2022). Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer cell, 40(3), 255–276. https://doi.org/10.1016/j.ccell.2022.01.006

Yang, F., Xue, J., Wang, G., & Diao, Q. (2022). Nanoparticle-based drug delivery systems for the treatment of cardiovascular diseases. Frontiers in pharmacology, 13, 999404. https://doi.org/10.3389/fphar.2022.999404

Yang, L., Zang, G., Li, J., Li, X., Li, Y., & Zhao, Y. (2020). Cell-derived biomimetic nanoparticles as a novel drug delivery system for atherosclerosis: predecessors and perspectives. Regenerative biomaterials, 7(4), 349–358. https://doi.org/10.1093/rb/rbaa019

Yurtseven, E., Ural, D., Baysal, K., & Tokgözoglu, L. (2020). An Update on the Role of PCSK9 in Atherosclerosis. Journal of atherosclerosis and thrombosis, 27(9), 909–918. https://doi.org/10.5551/jat.55400

Zakiev, E. R., Nikiforov, N. G., & Orekhov, A. N. (2017). Cell-Based Models for Development of Antiatherosclerotic Therapies. BioMed research international, 2017, 5198723. https://doi.org/10.1155/2017/5198723

Zhang, X., Bishawi, M., Zhang, G., Prasad, V., Salmon, E., Breithaupt, J. J., Zhang, Q., & Truskey, G. A. (2020). Modeling early stage atherosclerosis in a primary human vascular microphysiological system. Nature communications, 11(1), 5426. https://doi.org/10.1038/s41467-020-19197-8

Zhang, X., Huang, F., Li, W., Dang, J. L., Yuan, J., Wang, J., Zeng, D. L., Sun, C. X., Liu, Y. Y., Ao, Q., Tan, H., Su, W., Qian, X., Olsen, N., & Zheng, S. G. (2018). Human Gingiva-Derived Mesenchymal Stem Cells Modulate Monocytes/Macrophages and Alleviate Atherosclerosis. Frontiers in immunology, 9, 878. https://doi.org/10.3389/fimmu.2018.00878

Zhang, Y., Fatima, M., Hou, S., Bai, L., Zhao, S., & Liu, E. (2021). Research methods for animal models of atherosclerosis (Review). Molecular medicine reports, 24(6), 871. https://doi.org/10.3892/mmr.2021.12511

Zhou, M., Yu, Y., Chen, R., Liu, X., Hu, Y., Ma, Z., Gao, L., Jian, W., & Wang, L. (2023). Wall shear stress and its role in atherosclerosis. Frontiers in cardiovascular medicine, 10, 1083547. https://doi.org/10.3389/fcvm.2023.1083547

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
363
View
0
Share