Inflammatory Modulation of Interleukin-17 and -23 in Long COVID Diabetic Patients
Esra Hassan Abd Ali 1*
Journal of Angiotherapy 8(3) 1-7 https://doi.org/10.25163/angiotherapy.839583
Submitted: 10 January 2024 Revised: 05 March 2024 Published: 08 March 2024
The global COVID-19 pandemic disrupted daily life. This study demonstrated Long COVID's severity, especially in diabetic individuals, highlighting inflammation's crucial role.
Abstract
Background: The global COVID-19 pandemic has brought forth a persistent challenge in the form of Post-COVID-19 Syndrome (PCS) or Long COVID, affecting approximately 1 in 10 cases. Among the various risk factors, diabetes has emerged as a significant predictor of severe outcomes, with hyperglycemia and hyperinflammation playing pivotal roles. Despite the known association, the exact mechanisms linking diabetes to Long COVID remain elusive, prompting the need for further investigation. This study aimed to explore the relationship between immune responses, particularly interleukin-17 and -23 levels, and Long COVID severity in diabetic individuals. Method: Fifty diabetic patients with Long COVID were compared with fifty diabetic controls. Blood cytokine levels were measured, and Long COVID severity was assessed using the Long COVID Severity Scale (PCS-SS). Results: Results revealed elevated levels of interleukin-17 and -23 in diabetic patients with Long COVID compared to those without the condition. Additionally, participants with Long COVID and diabetes reported significantly higher symptom severity across physical, psychological, and cognitive domains, as indicated by the Long COVID Severity Scale. Conclusion: These findings underscore a strong association between heightened inflammatory responses and increased Long COVID severity in diabetic individuals. Understanding these mechanisms could inform targeted interventions to improve outcomes for this vulnerable population, highlighting the importance of tailored management strategies for Long COVID in diabetics.
Keywords: Interleukin-17, Interleukin-23, Long COVID, Diabetes, Hyperglycemia, Hyperinflammation, COVID-19 Pandemic, Immune Response
References
Abdelghani, M., Hamed, M. G., Said, A., & Fouad, E. (2022). Evaluation of perceived fears of COVID-19 virus infection and its relationship to health-related quality of life among patients with diabetes mellitus in Egypt during pandemic: a developing country single-center study. Diabetology international, 13(1), 108-116.
Acter, T., Uddin, N., Das, J., Akhter, A., Choudhury, T. R., & Kim, S. (2020). Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Science of the Total Environment, 730, 138996.
Al-Jandeel, T. J., Al-Karawi, A. S., Abdulrazzaq, O. I., & Tareq, S. (2023). An Evaluation of Laboratory Tests for COVID-19 Infection in Patients Residing in the Baghdad-Iraq. International Journal of Chemical and Biochemical Sciences, 23(1).
Al-Taie, A., Arueyingho, O., Khoshnaw, J., & Hafeez, A. (2022). Clinical outcomes of multidimensional association of type 2 diabetes mellitus, COVID-19 and sarcopenia: an algorithm and scoping systematic evaluation. Archives of Physiology and Biochemistry, 1-19.
Bala Krishnan A, Vigneshwaran V, Tharani Kumar L, (2024a). Understanding and Combatting COVID-19: Insights from Clinical Characteristics and Management Strategies, Journal of Angiotherapy, 8(2), 1-9, 9455
Bala Krishnan A , Vinoth Kumar K K, Tharani Kumar L, (2024b). Concerning Fungal Coinfections in COVID-19: Risks, Types, and Prevention – A Review, Journal of Angiotherpay, 8(2), 1-5, 9457
Bahmer, T., Borzikowsky, C., Lieb, W., Horn, A., Krist, L., Fricke, J., Scheibenbogen, C., Rabe, K. F., Maetzler, W., & Maetzler, C. (2022). Severity, predictors and clinical correlates of Post-COVID syndrome (PCS) in Germany: A prospective, multi-centre, population-based cohort study. EClinicalMedicine, 51.
Bouayed, J., & Bohn, T. (2021). The link between microglia and the severity of COVID-19: The “two-hit” hypothesis. Journal of medical virology, 93(7), 4111.
Burtscher, J., Millet, G. P., Fresa, M., Lanzi, S., Mazzolai, L., & Pellegrin, M. (2023). The link between impaired oxygen supply and cognitive decline in peripheral artery disease. Progress in Cardiovascular Diseases.
Chen, J., Hall, S., & Vitetta, L. (2021). Altered gut microbial metabolites could mediate the effects of risk factors in Covid-19. Reviews in medical virology, 31(5), 1-13.
Conte, C., Cipponeri, E., & Roden, M. (2024). Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocrine reviews, 45(2), 281-308.
Crook, H., Raza, S., Nowell, J., Young, M., & Edison, P. (2021). Long covid—mechanisms, risk factors, and management. Bmj, 374.
Deng, J., Wang, R., Huang, S., Ding, J., & Zhou, W. (2023). Macrophages-regulating nanomedicines for sepsis therapy. Chinese Chemical Letters, 34(3), 107588.
Drucker, D. J. (2020). Coronavirus infections and type 2 diabetes—shared pathways with therapeutic implications. Endocrine reviews, 41(3), bnaa011.
Erener, S. (2020). Diabetes, infection risk and COVID-19. Molecular metabolism, 39, 101044.
Fernández-de-Las-Peñas, C., Guijarro, C., Torres-Macho, J., Velasco-Arribas, M., Plaza-Canteli, S., Hernández-Barrera, V., & Arias-Navalón, J. A. (2021). Diabetes and the risk of long-term post-COVID symptoms. Diabetes, 70(12), 2917-2921.
Gavali, L. V., Mohammed, A. A., Al-Ogaili, M. J., Gaikwad, S. H., Kulkarni, M., Das, R., & Ubale, P. A. (2024). Novel terephthalaldehyde bis (thiosemicarbazone) Schiff base ligand and its transition metal complexes as antibacterial Agents: Synthesis, characterization and biological investigations. Results in Chemistry, 7, 101316.
Gregory, J. M., Slaughter, J. C., Duffus, S. H., Smith, T. J., LeStourgeon, L. M., Jaser, S. S., McCoy, A. B., Luther, J. M., Giovannetti, E. R., & Boeder, S. (2021). COVID-19 severity is tripled in the diabetes community: a prospective analysis of the pandemic’s impact in type 1 and type 2 diabetes. Diabetes care, 44(2), 526-532.
Harrop, C., Bal, V., Carpenter, K., & Halladay, A. (2021). A lost generation? The impact of the COVID-19 pandemic on early career ASD researchers. Autism research, 14(6), 1078-1087.
Ip, C., Luk, K. S., Yuen, V. L. C., Chiang, L., Chan, C. K., Ho, K., Gong, M., Lee, T. T. L., Leung, K. S. K., & Roever, L. (2021). Soluble suppression of tumorigenicity 2 (sST2) for predicting disease severity or mortality outcomes in cardiovascular diseases: A systematic review and meta-analysis. IJC Heart & Vasculature, 37, 100887.
Maxmen, A., & Mallapaty, S. (2021). The COVID lab-leak hypothesis: what scientists do and don’t know. Nature, 594(7863), 313-315.
Mundula, T., Russo, E., Curini, L., Giudici, F., Piccioni, A., Franceschi, F., & Amedei, A. (2022). Chronic systemic low-grade inflammation and modern lifestyle: The dark role of gut microbiota on related diseases with a focus on COVID-19 pandemic. Current medicinal chemistry, 29(33), 5370-5396.
Nanchal, R., Subramanian, R., Karvellas, C. J., Hollenberg, S. M., Peppard, W. J., Singbartl, K., Truwit, J., Al-Khafaji, A. H., Killian, A. J., & Alquraini, M. (2020). Guidelines for the management of adult acute and acute-on-chronic liver failure in the ICU: cardiovascular, endocrine, hematologic, pulmonary, and renal considerations. Critical care medicine, 48(3), e173-e191.
Ngo, V. L., & Gewirtz, A. T. (2021). Microbiota as a potentially-modifiable factor influencing COVID-19. Current Opinion in Virology, 49, 21-26.
Nguyen, C., Parson, H. K., Pettaway, J., Ingram, A., Sears, T., Bard, J. T., Forte, S., Wintringham, J. A., Vinik, E., & Siraj, E. S. (2023). Utilizing a quality of life tool to examine the presence of fatigue in subjects with diabetes mellitus. Journal of Clinical & Translational Endocrinology, 34, 100328.
Nithya A, Vinoth S V, Ashok Kumar M et al. (2024). Unprecedented Rise of Mucormycosis in COVID-19 Patients: Urgent Need for Protocol Adaptation and Awareness in India – A Review, Journal of Angiotherapy, 8(2), 1-4, 9458
O'Kelly, B., Vidal, L., Avramovic, G., Broughan, J., Connolly, S. P., Cotter, A. G., Cullen, W., Glaspy, S., McHugh, T., & Woo, J. (2022). Assessing the impact of COVID-19 at 1-year using the SF-12 questionnaire: data from the anticipate longitudinal cohort study. International Journal of Infectious Diseases, 118, 236-243.
Pan, M., Vasbinder, A., Anderson, E., Catalan, T., Shadid, H. R., Berlin, H., Padalia, K., O’hayer, P., Meloche, C., & Azam, T. U. (2021). Angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and outcomes in patients hospitalized for COVID-19. Journal of the American Heart Association, 10(24), e023535.
Pazoki, M., Keykhaei, M., Kafan, S., Montazeri, M., Mirabdolhagh Hazaveh, M., Sotoodehnia, M., Kazemian, S., Talebpour, M., Ashraf, H., & Shariat Moharari, R. (2021). Risk indicators associated with in-hospital mortality and severity in patients with diabetes mellitus and confirmed or clinically suspected COVID-19. Journal of Diabetes & Metabolic Disorders, 20, 59-69.
Pereko, K. K. A., Mensah, E. D., Acquaye, V. A., Nsiah-Asamoah, C., Chadare, F., Intiful, F. D., Setorglo, J., Ebu, N. I., & Dai-Kosi, A. D. (2021). The role of nutrition in respiratory disease and COVID-19 management. In Mental Health Effects of COVID-19 (pp. 187-213). Elsevier.
Riggioni, C., Comberiati, P., Giovannini, M., Agache, I., Akdis, M., Alves-Correia, M., Anto, J. M., Arcolaci, A., Azkur, A. K., & Azkur, D. (2020). A compendium answering 150 questions on COVID-19 and SARS-CoV-2. Allergy, 75(10), 2503-2541.
Roberts, J., Pritchard, A. L., Treweeke, A. T., Rossi, A. G., Brace, N., Cahill, P., MacRury, S. M., Wei, J., & Megson, I. L. (2021). Why is COVID-19 more severe in patients with diabetes? The role of angiotensin-converting enzyme 2, endothelial dysfunction and the immunoinflammatory system. Frontiers in Cardiovascular Medicine, 7, 629933.
Rout, D., & Sahoo, A. K. (2023). Clinical implications of a mechanistic link connecting SARS-Cov-2, diabetes mellitus, Zinc in COVID-19 pathophysiology, and the prophylactics in the treatment of SARS-CoV-2. European Journal of Medicinal Chemistry Reports, 100117.
Seeßle, J., Waterboer, T., Hippchen, T., Simon, J., Kirchner, M., Lim, A., Müller, B., & Merle, U. (2022). Persistent symptoms in adult patients 1 year after coronavirus disease 2019 (COVID-19): a prospective cohort study. Clinical Infectious Diseases, 74(7), 1191-1198.
Shamsuddin Sultan Khan. (2017). Why Interleukin 17A is the most Potential Next Generation Drug Target in Angiogenesis-mediated diseases. Angiotherapy, 1(1), pages 030-032
Shamsuddin Sultan Khan, Mohammad Adnan Iqbal, Muhammad Asif, Tabinda Azam, Majed Al-Mansoub, Rosenani S. M. A. Haque, Mohammed Khadeer Ahamed Basheer, Aman Shah Abdul Majid, Amin Malik Shah Abdul Majid1, (2019). Anti-GBM potential of Rosmarinic acid and its synthetic derivatives via targeting IL17A mediated angiogenesis pathway. Journal of Angiotherapy, 2(1), 011-011.
Steenblock, C., Hassanein, M., Khan, E. G., Yaman, M., Kamel, M., Barbir, M., Lorke, D. E., Rock, J. A., Everett, D., & Bejtullah, S. (2022). Diabetes and COVID-19: short-and long-term consequences. Hormone and Metabolic Research, 54(08), 503-509.
Troncone, A., Cascella, C., Chianese, A., Zanfardino, A., Pizzini, B., & Iafusco, D. (2023). Psychological consequences of the COVID-19 pandemic in people with type 1 diabetes: a systematic literature review. Journal of psychosomatic research, 168, 111206.
Vasbinder, A., Anderson, E., Shadid, H., Berlin, H., Pan, M., Azam, T. U., Khaleel, I., Padalia, K., Meloche, C., & O’hayer, P. (2022). Inflammation, hyperglycemia, and adverse outcomes in individuals with diabetes mellitus hospitalized for COVID-19. Diabetes care, 45(3), 692-700.
Zhou, Z., Wang, H., Tan, S., Zhang, H., & Zhu, Y. (2024). The alterations of innate immunity and enhanced severity of infections in diabetes mellitus. Immunology, 171(3), 313-323.
View Dimensions
View Altmetric
Save
Citation
View
Share