Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Enhancing Breast Cancer Classification: A Deep Learning Approach with Outlier Detection with Egret Swarm Optimization Algorithm and Feature Selection Integratio

S. Maria  Sylviaa 1*, N. Sudha 1

+ Author Affiliations

Journal of Angiotherapy 8(3) 1-13 https://doi.org/10.25163/angiotherapy.839520

Submitted: 07 January 2024  Revised: 29 February 2024  Published: 03 March 2024 

Early Breast Cancer diagnosis via data mining is crucial. Proposed methods achieve high accuracy, improving treatment outcomes for patients significantly.

Abstract


Background: Breast cancer (BC) remains a significant global health concern, with high incidence and mortality rates. Early detection and accurate classification are crucial for effective treatment. Traditional BC treatments include surgery, radiation, and medication aimed at eliminating microscopic malignancies. Advances in machine learning (ML) and deep learning (DL) have shown promise in enhancing BC diagnosis and classification accuracy. Method: This study used a novel classification model for BC using a Deep Neural Network-Genetic Algorithm-Evolutionary Strategy Optimization (DNN-GA-ESO) approach. The methodology involves three key phases: data preprocessing using Improved Linear Discriminant Analysis (ILDA), outlier detection via a Deep Neural Network (DNN), and feature selection using a Genetic Algorithm (GA). Finally, the Evolutionary Strategy Optimization (ESO) algorithm classifies the BC data as benign or malignant. The effectiveness of this approach was validated using the Wisconsin Breast Cancer (WBC) and Wisconsin Diagnosis Breast Cancer (WDBC) datasets. Results: The proposed DNN-GA-ESO method demonstrated superior performance in classifying BC. For the WBC dataset, the model achieved an accuracy of 99.30%, precision of 99.35%, F-measure of 0.9936, recall of 99.42%, and kappa statistic of 99.48%. For the WDBC dataset, it achieved an accuracy of 99.45%. These results significantly outperformed existing methods such as K-means with Decision Tree, UPFC with ASVM, and other standard ML algorithms. Conclusion: The DNN-GA-ESO approach enhances BC classification accuracy through efficient outlier detection and feature selection. This method surpasses traditional and current techniques, providing a more reliable and precise diagnostic tool for early BC detection. The integrated meta-algorithm offers a promising solution for medical diagnostics, potentially improving patient outcomes through early and accurate detection of BC. Future work will focus on further refining the model and exploring its applicability to other types of cancer.

Keywords: Breast cancer classification, Deep learning, Genetic algorithms, Outlier detection, Enhanced Swarm Optimization

References


Abualigah, L., & Dulaimi, A. J. (2021). A novel feature selection method for data mining tasks using hybrid sine cosine algorithm and genetic algorithm. Cluster Computing, 24, 2161-2176.

Adebiyi, M. O., Arowolo, M. O., Mshelia, M. D., & Olugbara, O. O. (2022). A linear discriminant analysis and classification model for breast cancer diagnosis. Applied Sciences, 12(22), 11455..

Adege, A. B., Lin, H. P., Tarekegn, G. B., & Jeng, S. S. (2018). Applying deep neural network (DNN) for robust indoor localization in multi-building environment. Applied Sciences, 8(7), 1062.

Alzubaidi, A., Cosma, G., Brown, D., & Pockley, A. G. (2016, October). Breast cancer diagnosis using a hybrid genetic algorithm for feature selection based on mutual information. In 2016 International Conference on Interactive Technologies and Games (ITAG) (pp. 70-76). IEEE.

Amarasinghe, K., Kenney, K., & Manic, M. (2018, July). Toward explainable deep neural network-based anomaly detection. In 2018 11th international conference on human system interaction (HSI) (pp. 311-317). IEEE.

Chambers, L., Gaber, M. M., & Abdallah, Z. S. (2020). DeepStreamCE: A Streaming Approach to Concept Evolution Detection in Deep Neural Networks. arXiv preprint arXiv:2004.04116.

Chaudhuri, A., & Sahu, T. P. (2021). A hybrid feature selection method based on Binary Jaya algorithm for micro-array data classification. Computers & Electrical Engineering, 90, 106963.

Chen, Z., Francis, A., Li, S., Liao, B., Xiao, D., Ha, T. T., ... & Cao, X. (2022). Egret swarm optimization algorithm: an evolutionary computation approach for model free optimization. Biomimetics, 7(4), 144.

Devi, R. D., & Devi, M. I. (2016). Outlier detection algorithm combined with decision tree classifier for early diagnosis of breast cancer. Int. J. Adv. Eng. Technol, 12, 93-98.

Gao, J., Song, X., Wen, Q., Wang, P., Sun, L., & Xu, H. (2020). Robusttad: Robust time series anomaly detection via decomposition and convolutional neural networks. arXiv preprint arXiv:2002.09545.

Gómez-Flores, W., & Hernández-López, J. (2020). Assessment of the invariance and discriminant power of morphological features under geometric transformations for breast tumor classification. Computer methods and programs in biomedicine, 185, 105173.

Goni, M. O. F., Hasnain, F. M. S., Siddique, M. A. I., Jyoti, O., & Rahaman, M. H. (2020, December). Breast cancer detection using deep neural network. In 2020 23rd International Conference on Computer and Information Technology (ICCIT) (pp. 1-5). IEEE.

Haq, A. U., Zeb, A., Lei, Z., & Zhang, D. (2021). Forecasting daily stock trend using multi-filter feature selection and deep learning. Expert Systems with Applications, 168, 114444.

Huang, Q., Chen, Y., Liu, L., Tao, D., & Li, X. (2019). On combining biclustering mining and AdaBoost for breast tumor classification. IEEE Transactions on Knowledge and Data Engineering, 32(4), 728-738. 

Irfan, R., Almazroi, A.A., Rauf, H.T., Damaševicius, R., Nasr, E.A. and Abdelgawad, A.E., (2021). Dilated semantic segmentation for breast ultrasonic lesion detection using parallel feature fusion. Diagnostics, 11(7), p.1212.

Khan, S., Islam, N., Jan, Z., Din, I. U., & Rodrigues, J. J. C. (2019). A novel deep learning-based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognition Letters, 125, 1-6.

Lahoura, V., Singh, H., Aggarwal, A., Sharma, B., Mohammed, M. A., Damaševicius, R., ... & Cengiz, K. (2021). Cloud computing-based framework for breast cancer diagnosis using extreme learning machine. Diagnostics, 11(2), 241. 

Liu, Y., Ren, L., Cao, X., & Tong, Y. (2020). Breast tumors recognition based on edge feature extraction using support vector machine. Biomedical Signal Processing and Control, 58, 101825.

Mao, N., Yin, P., Wang, Q., Liu, M., Dong, J., Zhang, X., ... & Hong, N. (2019). Added value of radiomics on mammography for breast cancer diagnosis: a feasibility study. JACR, 16(4), 485-491.

Mishra, A. K., Roy, P., & Bandyopadhyay, S. (2020). Genetic algorithm-based selection of appropriate biomarkers for improved breast cancer prediction. In Intelligent Systems and Applications: Proceedings of the 2019 Intelligent Systems Conference (IntelliSys) Volume 2 (pp. 724-732). Springer International Publishing.

Mridha, M. F., Hamid, M. A., Monowar, M. M., Keya, A. J., Ohi, A. Q., Islam, M. R., & Kim, J. M. (2021). A comprehensive survey on deep-learning-based breast cancer diagnosis. Cancers, 13(23), 6116.

Munir, M., Siddiqui, S. A., Dengel, A., & Ahmed, S. (2018). DeepAnT: A deep learning approach for unsupervised anomaly detection in time series. Ieee Access, 7, 1991-2005.

Nguyen, B. H., Xue, B., & Zhang, M. (2020). A survey on swarm intelligence approaches to feature selection in data mining. Swarm and Evolutionary Computation, 54, 100663.

Rabie, A. H., Ali, S. H., Saleh, A. I., & Ali, H. A. (2020). A new outlier rejection methodology for supporting load forecasting in smart grids based on big data. Cluster Computing, 23, 509-535.

Ricciardi, C., Valente, A. S., Edmund, K., Cantoni, V., Green, R., Fiorillo, A., ... & Cesarelli, M. (2020). Linear discriminant analysis and principal component analysis to predict coronary artery disease. J. Health Inform., 26(3), 2181-2192.

Rupali, Verma, R., Handa, R., & Puri, V. (2021). Feature Selection Using Genetic Algorithm for Cancer Prediction System. In Advances in Communication and Computational Technology: Select Proceedings of ICACCT 2019 (pp. 1197-1212). Springer Singapore.

Shaban, W. M., Rabie, A. H., Saleh, A. I., & Abo-Elsoud, M. A. (2020). A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier. Knowledge-Based Systems, 205, 106270.

Sun, W., Tang, M., Zhang, L., Huo, Z., & Shu, L. (2020). A survey of using swarm intelligence algorithms in IoT. Sensors, 20(5), 1420.

Sun, W., Tseng, T. L. B., Zhang, J., & Qian, W. (2017). Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Computerized Medical Imaging and Graphics, 57, 4-9.

Valvano, G., Santini, G., Martini, N., Ripoli, A., Iacconi, C., Chiappino, D., & Della Latta, D. (2019). Convolutional neural networks for the segmentation of microcalcification in mammography imaging. J. Healthc. Eng., 2019.

Wang, H., Feng, J., Bu, Q., Liu, F., Zhang, M., Ren, Y., & Lv, Y. (2018). Breast mass detection in digital mammogram based on gestalt psychology. J. Healthc. Eng., 2018.

Wei, P., Shi, X., & Zhou, J. (2023, December). ESOA Algorithm Based on learning rate optimization in Convolutional neural networks. In 2023 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 435-439). IEEE.

Xue, J., & Shen, B. (2020). A novel swarm intelligence optimization approach: sparrow search algorithm. Systems science & control engineering, 8(1), 22-34.

Yusuf, A. B., Dima, R. M., & Aina, S. K. (2021). Optimized breast cancer classification using feature selection and outliers detection. JNSPS, 298-307.

Zhao, H., Wang, Z., & Nie, F. (2018). A new formulation of linear discriminant analysis for robust dimensionality reduction. IEEE Transactions on Knowledge and data engineering, 31(4), 629-640.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
682
View
0
Share